Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The score-based diffusion model has made significant progress in the field of computer vision, surpassing the performance of generative models, such as variational autoencoders, and has been extended to applications such as speech enhancement and recognition. This paper proposes a U-Net architecture using a score-based diffusion model and an efficient multi-scale attention mechanism (EMA) for the speech enhancement task. The model leverages the symmetric structure of U-Net to extract speech features and captures contextual information and local details across different scales using the EMA mechanism, improving speech quality in noisy environments. We evaluate the method on the VoiceBank-DEMAND (VB-DMD) dataset and the DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus–TUT Sound Events 2017 (TIMIT-TUT) dataset. The experimental results show that the proposed model performed well in terms of speech quality perception (PESQ), extended short-time objective intelligibility (ESTOI), and scale-invariant signal-to-distortion ratio (SI-SDR). Especially when processing out-of-dataset noisy speech, the proposed method achieved excellent speech enhancement results compared to other methods, demonstrating the model’s strong generalization capability. We also conducted an ablation study on the SDE solver and the EMA mechanism, and the results show that the reverse diffusion method outperformed the Euler–Maruyama method, and the EMA strategy could improve the model performance. The results demonstrate the effectiveness of these two techniques in our system. Nevertheless, since the model is specifically designed for Gaussian noise, its performance under non-Gaussian or complex noise conditions may be limited.

Details

Title
SGM-EMA: Speech Enhancement Method Score-Based Diffusion Model and EMA Mechanism
Author
Wu, Yuezhou; Li Zhiri; Huang, Hua
First page
5243
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211858530
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.