Content area

Abstract

The term “big data analytics (BDA)” defines the computational techniques to study complex datasets that are too large for common data processing software, encompassing techniques such as data mining (DM), machine learning (ML), and predictive analytics (PA) to find patterns, correlations, and insights in massive datasets. Cardiovascular diseases (CVDs) are attributed to a combination of various risk factors, including sedentary lifestyle, obesity, diabetes, dyslipidaemia, and hypertension. We searched PubMed and published research using the Google and Cochrane search engines to evaluate existing models of BDA that have been used for CVD prediction models. We critically analyse the pitfalls and advantages of various BDA models using artificial intelligence (AI), machine learning (ML), and artificial neural networks (ANN). BDA with the integration of wide-ranging data sources, such as genomic, proteomic, and lifestyle data, could help understand the complex biological mechanisms behind CVD, including risk stratification in risk-exposed individuals. Predictive modelling is proposed to help in the development of personalized medicines, particularly in pharmacogenomics; understanding genetic variation might help to guide drug selection and dosing, with the consequent improvement in patient outcomes. To summarize, incorporating BDA into cardiovascular research and treatment represents a paradigm shift in our approach to CVD prevention, diagnosis, and management. By leveraging the power of big data, researchers and clinicians can gain deeper insights into disease mechanisms, improve patient care, and ultimately reduce the burden of cardiovascular disease on individuals and healthcare systems.

Details

1009240
Title
Revolutionizing Utility of Big Data Analytics in Personalized Cardiovascular Healthcare
Author
Sharma Praneel 1 ; Sharma Pratyusha 2 ; Sharma, Kamal 3   VIAFID ORCID Logo  ; Varma Vansh 4   VIAFID ORCID Logo  ; Patel Vansh 5 ; Jeel, Sarvaiya 5   VIAFID ORCID Logo  ; Jonsi, Tavethia 5   VIAFID ORCID Logo  ; Mehta Shubh 5 ; Bhadania Anshul 5   VIAFID ORCID Logo  ; Patel Ishan 6 ; Shah, Komal 7 

 Department of Information and Communication Technology, Dhirubhai Ambani Institute of Information and Communication Technology (DAIICT), Gandhinagar 382007, Gujarat, India; [email protected] 
 Department of Computer Science & Engineering, Ahmedabad University, Ahmedabad 380009, Gujarat, India; [email protected] 
 Department of Cardiology, SAL Hospital, Ahmedabad 380054, Gujarat, India 
 GMERS Medical College and Hospital, Valsad 396001, Gujarat, India; [email protected] 
 BJ Medical College, Civil Hospital, Ahmedabad 380016, Gujarat, India; [email protected] (V.P.); [email protected] (J.S.); [email protected] (J.T.); [email protected] (S.M.); [email protected] (A.B.) 
 Department of Biology, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; [email protected] 
 Indian Institute of Public Health, Gandhinagar 382042, Gujarat, India; [email protected] 
Publication title
Volume
12
Issue
5
First page
463
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-27
Milestone dates
2025-03-19 (Received); 2025-04-23 (Accepted)
Publication history
 
 
   First posting date
27 Apr 2025
ProQuest document ID
3211860053
Document URL
https://www.proquest.com/scholarly-journals/revolutionizing-utility-big-data-analytics/docview/3211860053/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-28
Database
ProQuest One Academic