Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned aerial vehicle (UAV) swarms are widely applied in various fields, including military and civilian domains. However, due to the scarcity of spectrum resources, UAV swarm clustering technology has emerged as an effective method for achieving spectrum sharing among UAV swarms. This paper introduces a distributed heterogeneous multi-agent deep reinforcement learning algorithm, named HMDRL-UC, which is specifically designed to address the cluster-based spectrum sharing problem in heterogeneous UAV swarms. Heterogeneous UAV swarms consist of two types of UAVs: cluster head (CH) and cluster member (CM). Each UAV is equipped with an intelligent agent to execute the deep reinforcement learning (DRL) algorithm. Correspondingly, the HMDRL-UC consists of two parts: multi-agent proximal policy optimization for cluster head (MAPPO-H) and independent proximal policy optimization for cluster member (IPPO-M). The MAPPO-H enables the CHs to decide cluster selection and moving position, while CMs utilize IPPO-M to cluster autonomously under the condition of certain partial channel distribution information (CDI). Adequate experimental evidence has confirmed that the HMDRL-UC algorithm proposed in this paper is not only capable of managing dynamic drone swarm scenarios in the presence of partial CDI, but also has a clear advantage over the other existing three algorithms in terms of average throughput, intra-cluster communication delay, and minimum signal-to-noise ratio (SNR).

Details

Title
Heterogeneous Multi-Agent Deep Reinforcement Learning for Cluster-Based Spectrum Sharing in UAV Swarms
Author
Liao Xiaomin  VIAFID ORCID Logo  ; Wang Yulai  VIAFID ORCID Logo  ; Yang, Han  VIAFID ORCID Logo  ; Li, You  VIAFID ORCID Logo  ; Lin Chushan  VIAFID ORCID Logo  ; Zhu, Xuan  VIAFID ORCID Logo 
First page
377
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211937377
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.