Content area

Abstract

This study addresses the two-dimensional weakly homogeneous Bin Packing Problem (2D-BPP) in the context of robotic packing, where items must be arranged in a manner feasible for robotic manipulation. Traditional heuristics for this NP-hard problem often lack adaptability across diverse datasets, while metaheuristics typically suffer from slow convergence. To overcome these limitations, we propose a novel neural-driven constructive heuristic. The method employs a population of simple feed-forward neural networks, which are trained using black-box optimization via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The resulting neural network dynamically scores candidate placements within the constructive heuristic. Unlike conventional heuristics, the approach adapts to instance-specific characteristics without relying on predefined rules. Evaluated on datasets generated by 2DCPackGen and real-world logistic scenarios, the proposed method consistently outperforms benchmark heuristics such as MaxRects and Skyline, reducing the average number of bins required across various item types and demand ranges. The most significant improvements occur in complex instances, with up to 86% of 2DCPackGen cases yielding superior results. This heuristic offers a flexible and extremely fast, data-driven solution to the algorithm selection problem, demonstrating robustness and potential for broader application in combinatorial optimization while avoiding the scalability issues of reinforcement learning-based methods.

Details

1009240
Business indexing term
Title
Neural-Driven Constructive Heuristic for 2D Robotic Bin Packing Problem
Publication title
Volume
14
Issue
10
First page
1956
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-11
Milestone dates
2025-03-28 (Received); 2025-05-07 (Accepted)
Publication history
 
 
   First posting date
11 May 2025
ProQuest document ID
3211937587
Document URL
https://www.proquest.com/scholarly-journals/neural-driven-constructive-heuristic-2d-robotic/docview/3211937587/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-27
Database
ProQuest One Academic