Content area

Abstract

Existing databases supporting Online Transaction Processing (OLTP) workloads based on non-volatile memory (NVM) almost all use Multi-Version Concurrency Control (MVCC) protocol to ensure data consistency. MVCC allows multiple transactions to execute concurrently without lock conflicts, reducing the wait time between read and write operations, and thereby significantly increasing the throughput of NVM OLTP engines. However, it requires garbage collection (GC) to clean up the obsolete tuple versions to prevent storage overflow, which consumes additional system resources. Furthermore, existing GC approaches in NVM OLTP engines are inefficient because they are based on methods designed for dynamic random access memory (DRAM) OLTP engines, without considering the significant differences in read/write bandwidth and cache line size between NVM and DRAM. These approaches either involve excessive random NVM access (traversing tuple versions) or lead to too many additional NVM write operations, both of which degrade the performance and durability of NVM. In this paper, we propose TB-Collect, a high-performance GC approach specifically designed for NVM OLTP engines. On the one hand, TB-Collect separates tuple headers and contents, storing data in an append-only manner, which greatly reduces NVM writes. On the other hand, TB-Collect performs GC at the block level, eliminating the need to traverse tuple versions and improving the utilization of reclaimed space. We have implemented TB-Collect on DBx1000 and MySQL. Experimental results show that TB-Collect achieves 1.15 to 1.58 times the throughput of existing methods when running TPCC and YCSB workloads.

Details

1009240
Business indexing term
Title
TB-Collect: Efficient Garbage Collection for Non-Volatile Memory Online Transaction Processing Engines
Author
Publication title
Volume
14
Issue
10
First page
2080
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-21
Milestone dates
2025-04-18 (Received); 2025-05-19 (Accepted)
Publication history
 
 
   First posting date
21 May 2025
ProQuest document ID
3211939574
Document URL
https://www.proquest.com/scholarly-journals/tb-collect-efficient-garbage-collection-non/docview/3211939574/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-27
Database
ProQuest One Academic