Content area
The direct porting of the Range Migration Algorithm to GPUs for three-dimensional (3D) cylindrical synthetic aperture radar (CSAR) imaging faces difficulties in achieving real-time performance while the architecture and programming models of GPUs significantly differ from CPUs. This paper proposes a GPU-optimized implementation for accelerating CSAR imaging. The proposed method first exploits the concentric-square-grid (CSG) interpolation to reduce the computational complexity for reconstructing a uniform 2D wave-number domain. Although the CSG method transforms the 2D traversal interpolation into two independent 1D interpolations, the interval search to determine the position intervals for interpolation results in a substantial computational burden. Therefore, binary search is applied to avoid traditional point-to-point matching for efficiency improvement. Additionally, leveraging the partition independence of the grid distribution of CSG, the 360° data are divided into four streams along the diagonal for parallel processing. Furthermore, high-speed shared memory is utilized instead of high-latency global memory in the Hadamard product for the phase compensation stage. The experimental results demonstrate that the proposed method achieves CSAR imaging on a
Details
1 Institute of Biomedical Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Terahertz Technology Innovation Research Institute, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China