Full text

Turn on search term navigation

© 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A long‐standing challenge in studying the global carbon cycle has been understanding the factors controlling inter–annual variation (IAV) of carbon fluxes, and improving their representations in existing biogeochemical models. Here, we compared an optimality‐based model and a semi‐empirical light use efficiency model to understand how current models can be improved to simulate IAV of gross primary production (GPP). Both models simulated hourly GPP and were parameterized for (a) each site–year, (b) each site with an additional constraint on IAV (CostIAV $Cos{t}^{\mathit{IAV}}$), (c) each site, (d) each plant–functional type, and (e) globally. This was followed by forward runs using calibrated parameters, and model evaluations using Nash–Sutcliffe efficiency (NSE) as a model‐fitness measure at different temporal scales across 198 eddy‐covariance sites representing diverse climate–vegetation types. Both models simulated hourly GPP better (median normalized NSE: 0.83 and 0.85) than annual GPP (median normalized NSE: 0.54 and 0.63) for most sites. Specifically, the optimality‐based model substantially improved from NSE of −1.39 to 0.92 when drought stress was explicitly included. Most of the variability in model performances was due to model types and parameterization strategies. The semi‐empirical model produced statistically better hourly simulations than the optimality‐based model, and site–year parameterization yielded better annual model performance. Annual model performance did not improve even when parameterized using CostIAV $Cos{t}^{\mathit{IAV}}$. Furthermore, both models underestimated the peaks of diurnal GPP, suggesting that improving predictions of peaks could produce better annual model performance. Our findings reveal current modeling deficiencies in representing IAV of carbon fluxes and guide improvements in further model development.

Details

Title
Addressing Challenges in Simulating Inter–Annual Variability of Gross Primary Production
Author
De, Ranit 1   VIAFID ORCID Logo  ; Bao, Shanning 2   VIAFID ORCID Logo  ; Koirala, Sujan 3   VIAFID ORCID Logo  ; Brenning, Alexander 4   VIAFID ORCID Logo  ; Reichstein, Markus 5   VIAFID ORCID Logo  ; Tagesson, Torbern 6   VIAFID ORCID Logo  ; Liddell, Michael 7   VIAFID ORCID Logo  ; Ibrom, Andreas 8   VIAFID ORCID Logo  ; Wolf, Sebastian 9   VIAFID ORCID Logo  ; Šigut, Ladislav 10   VIAFID ORCID Logo  ; Hörtnagl, Lukas 9   VIAFID ORCID Logo  ; Woodgate, William 11   VIAFID ORCID Logo  ; Korkiakoski, Mika 12   VIAFID ORCID Logo  ; Merbold, Lutz 13   VIAFID ORCID Logo  ; Black, T. Andrew 14   VIAFID ORCID Logo  ; Roland, Marilyn 15   VIAFID ORCID Logo  ; Klosterhalfen, Anne 16   VIAFID ORCID Logo  ; Blanken, Peter D. 17   VIAFID ORCID Logo  ; Knox, Sara 18   VIAFID ORCID Logo  ; Sabbatini, Simone 19   VIAFID ORCID Logo  ; Gielen, Bert 15   VIAFID ORCID Logo  ; Montagnani, Leonardo 20   VIAFID ORCID Logo  ; Fensholt, Rasmus 21   VIAFID ORCID Logo  ; Wohlfahrt, Georg 22   VIAFID ORCID Logo  ; Desai, Ankur R. 23   VIAFID ORCID Logo  ; Paul‐Limoges, Eugénie 24   VIAFID ORCID Logo  ; Galvagno, Marta 25   VIAFID ORCID Logo  ; Hammerle, Albin 22   VIAFID ORCID Logo  ; Jocher, Georg 26   VIAFID ORCID Logo  ; Reverter, Borja Ruiz 27 ; Holl, David 28   VIAFID ORCID Logo  ; Chen, Jiquan 29   VIAFID ORCID Logo  ; Vitale, Luca 30   VIAFID ORCID Logo  ; Arain, M. Altaf 31   VIAFID ORCID Logo  ; Carvalhais, Nuno 32   VIAFID ORCID Logo 

 Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, Department of Geography, Friedrich Schiller University Jena, Jena, Germany 
 Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, National Space Science Center, Chinese Academy of Sciences, Beijing, China 
 Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany 
 Department of Geography, Friedrich Schiller University Jena, Jena, Germany, ELLIS Unit Jena, Jena, Germany 
 Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, ELLIS Unit Jena, Jena, Germany 
 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden 
 Centre for Tropical, Environmental, and Sustainability Sciences, James Cook University, Cairns, QLD, Australia 
 Department of Environment and Resource Engineering, Technical University of Denmark (DTU), Lyngby, Denmark 
 Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland 
10  Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic 
11  School of the Environment, The University of Queensland, St Lucia, QLD, Australia, CSIRO, Space and Astronomy, Kensington, WA, Australia 
12  Finnish Meteorological Institute, Climate System Research Unit, Helsinki, Finland 
13  Integrative Agroecology Group, Agroscope, Zürich, Switzerland 
14  Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada 
15  Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium 
16  Bioclimatology, University of Göttingen, Göttingen, Germany 
17  Department of Geography, University of Colorado Boulder, Boulder, CO, USA 
18  Department of Geography, McGill University, Montreal, QC, Canada, Department of Geography, The University of British Columbia, Vancouver, BC, Canada 
19  CMCC Foundation ‐ Euro‐Mediterranean Center on Climate Change, Lecce, Italy 
20  Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen‐Bolzano, Bolzano, Italy 
21  Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark 
22  Institut für Ökologie, Universität Innsbruck, Innsbruck, Austria 
23  Department of Atmospheric and Oceanic Sciences, University of Wisconsin‐Madison, Madison, WI, USA 
24  Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland 
25  Environmental Protection Agency of Aosta Valley, Climate Change Unit, (ARPA Valle d'Aosta), Saint‐Christophe AO, Italy 
26  Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic, Thünen Institute of Climate‐Smart Agriculture, Braunschweig, Germany 
27  Departamento de Química e Física, Universidade Federal da Paraíba ‐ Campus II, Areia, Brazil 
28  Institute of Soil Science, University of Hamburg, Hamburg, Germany 
29  Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA 
30  Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFoM), Portici, Italy 
31  School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada 
32  Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, ELLIS Unit Jena, Jena, Germany, CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal 
Section
Research Article
Publication year
2025
Publication date
May 1, 2025
Publisher
John Wiley & Sons, Inc.
e-ISSN
19422466
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211941817
Copyright
© 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.