Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bamboo is widely distributed throughout the world, particularly in tropical and subtropical regions. This study aims to investigate the biomechanical properties of the root system of Bambusa pachinensis (Pachi bamboo). The root system of Pachi bamboo grows densely in clusters, with most roots growing vertically and potentially penetrating more than one meter into the soil after growing for several years. Owing to these characteristics, Pachi bamboo is considered a promising plant species for soil reinforcement. However, research on its root reinforcement capabilities remains limited. In situ shear and pullout tests were conducted to assess the root reinforcement of the fibrous root system. The root diameters of Pachi bamboo are typically less than 4 mm, and its tensile strength is notably lower than that of tree roots. This study establishes a method for estimating the root reinforcement of Pachi bamboo based on the number and cross-sectional area of the culms in a single bamboo cluster. The relationship between the maximum tensile force (Fult) and root diameter (D) is Fult = (3.65)D2.59, where Fult is in Newtons (N), and D is in millimeters (mm). The relationship between the pullout resistance (Pult) and the shear resistance (Sult) with the number of culms (SN) is Pult = 46.5(SN) and Sult = 0.53(SN) + 5, where Pult is in Newtons (N), and Sult is in kilopascals (kPa). These results suggest a positive contribution of the number of culms to mechanical resistance.

Details

Title
Exploring the Root–Soil Anchoring Dynamics of Bambusa pachinensis (Pachi Bamboo) Root System
Author
Chia-Cheng, Fan 1 ; Chung-Hao, Chen 2 ; Chen Chunhsiung 3 

 Department of Construction Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan 
 CECI Engineering Consultants, Inc., Taipei 114, Taiwan; [email protected] 
 Kuocheng Construction Co., Kaohsiung 800, Taiwan; [email protected] 
First page
832
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211971288
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.