Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research addresses the challenge of bias in Remotely Sensed Rainfall (RSR) datasets used for hydrological planning in Uganda’s data-scarce, ungauged catchments. Four bias correction methods, Quantile Mapping (QM), Linear Transformation (LT), Delta Multiplicative (DM), and Polynomial Regression (PR), were evaluated using daily rainfall data from four gauged stations (Gulu, Soroti, Jinja, Mbarara). QM consistently outperformed other methods based on statistical metrics, e.g., for National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA_CPC) RSR data at Gulu, Root-Mean-Square Error (RMSE) was reduced from 29.20 mm to 19.00 mm, Mean Absolute Error (MAE) reduced from 22.44 mm to 12.84 mm, and Percent Bias (PBIAS) reduced from −19.23% to 1.05%, and improved performance goodness-of-fit tests (KS = 0.03, p = 1.00), while PR, though statistically strong, failed due to overfitting. A bias correction framework was developed for ungauged catchments, using predetermined bias factors derived from observed station data. Validation at Arua (tropical savannah) and Fort Portal (tropical monsoon) demonstrated significant improvements in RSR data when the bias correction framework was applied. At Arua, bias correction of Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data reduced RMSE from 49.14 mm to 21.41 mm, MAE from 45.74 mm to 17.38 mm, and PBIAS from −59.83% to −8.18%, while at Fort Portal, bias correction of the CHIRPS dataset reduced RMSE from 28.35 mm to 15.02 mm, MAE from 25.28 mm to 11.35 mm, and PBIAS from −46.2% to 4.74%. Our research concludes that QM is the most effective method, and that the framework is a tool for improving RSR data in ungauged catchments. Recommendations for future work includes machine learning integration and broader regional validation.

Details

Title
Evaluating Bias Correction Methods Using Annual Maximum Series Rainfall Data from Observed and Remotely Sensed Sources in Gauged and Ungauged Catchments in Uganda
Author
Okirya Martin  VIAFID ORCID Logo  ; Du Plessis JA  VIAFID ORCID Logo 
First page
113
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23065338
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211981822
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.