Content area

Abstract

Despite their unprecedented success, artificial neural networks suffer extreme opacity and weakness in learning general knowledge from limited experience. Some argue that the key to overcoming those limitations in artificial neural networks is efficiently combining continuity with compositionality principles. While it is unknown how the brain encodes and decodes information in a way that enables both rapid responses and complex processing, there is evidence that the neocortex employs sparse distributed representations for this task. This is an active area of research. This work deals with one of the challenges in this field related to encoding and decoding nested compositional structures, which are essential for representing complex real-world concepts. One of the algorithms in this field is called context-dependent thinning (CDT). A distinguishing feature of CDT relative to other methods is that the CDT-encoded vector remains similar to each component input and combinations of similar inputs. In this work, we propose a novel encoding method termed CPSE, based on CDT ideas. In addition, we propose a novel decoding method termed CPSD, based on triadic memory. The proposed algorithms extend CDT by allowing both encoding and decoding of information, including the composition order. In addition, the proposed algorithms allow to optimize the amount of compute and memory needed to achieve the desired encoding/decoding performance.

Details

1009240
Title
Efficient Context-Preserving Encoding and Decoding of Compositional Structures Using Sparse Binary Representations
Author
Publication title
Volume
16
Issue
5
First page
343
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-24
Milestone dates
2025-03-08 (Received); 2025-04-18 (Accepted)
Publication history
 
 
   First posting date
24 Apr 2025
ProQuest document ID
3211985916
Document URL
https://www.proquest.com/scholarly-journals/efficient-context-preserving-encoding-decoding/docview/3211985916/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-30
Database
ProQuest One Academic