Content area

Abstract

Forecasting demand for newly introduced products presents substantial challenges within high-mix, low-volume manufacturing contexts, primarily due to cold-start conditions and unpredictable order behavior. This research proposes the Dynamic Dual-Phase Forecasting Framework (DDPFF) that amalgamates machine learning-based classification, similarity-driven analogous forecasting, ARMA-based residual compensation, and statistical process control for adaptive model refinement. The framework underwent evaluation through five real-world case studies conducted by a Taiwanese semiconductor tray manufacturer, encompassing a variety of scenarios characterized by high volatility, seasonality, and structural drift. The results indicate that DDPFF consistently outperformed conventional ARIMA and analogous forecasting methodologies, yielding an average reduction of 35.7% in mean absolute error and a 41.8% enhancement in residual stability across all examined cases. In one representative instance, the forecast error decreased by 44.9% compared to established benchmarks. These findings underscore the framework’s resilience in cold-start situations and its capacity to adapt to evolving demand patterns, providing a viable solution for data-scarce and dynamic manufacturing environments.

Details

1009240
Title
Dynamic Dual-Phase Forecasting Model for New Product Demand Using Machine Learning and Statistical Control
Author
Publication title
Volume
13
Issue
10
First page
1613
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-14
Milestone dates
2025-04-12 (Received); 2025-05-11 (Accepted)
Publication history
 
 
   First posting date
14 May 2025
ProQuest document ID
3212074287
Document URL
https://www.proquest.com/scholarly-journals/dynamic-dual-phase-forecasting-model-new-product/docview/3212074287/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-27
Database
ProQuest One Academic