Content area

Abstract

Transformer winding faults (TWFs) can lead to insulation breakdown, internal short circuits, and catastrophic transformer failure. Due to their low current magnitude—particularly at early stages such as inter-turn short circuits, axial or radial displacement, or winding looseness—TWFs often induce minimal impedance changes and generate fault currents that remain within normal operating thresholds. As a result, conventional protection schemes like overcurrent relays, which are tuned for high-magnitude faults, fail to detect such internal anomalies. Moreover, frequency response deviations caused by TWFs often resemble those introduced by routine phenomena such as tap changer operations, load variation, or core saturation, making accurate diagnosis difficult using traditional FRA interpretation techniques. This paper presents a novel diagnostic framework combining Discrete Wavelet Transform (DWT) and Support Vector Machine (SVM) classification to improve the detection of TWFs. The proposed system employs region-based statistical deviation labeling to enhance interpretability across five well-defined frequency bands. It is validated on five real FRA datasets obtained from operating transformers in Gauteng Province, South Africa, covering a range of MVA ratings and configurations, thereby confirming model transferability. The system supports post-processing but is lightweight enough for near real-time diagnostic use, with average execution time under 12 s per case on standard hardware. A custom graphical user interface (GUI), developed in MATLAB R2022a, automates the diagnostic workflow—including region identification, wavelet-based decomposition visualization, and PDF report generation. The complete framework is released as an open-access toolbox for transformer condition monitoring and predictive maintenance.

Details

1009240
Business indexing term
Title
Winding Fault Detection in Power Transformers Based on Support Vector Machine and Discrete Wavelet Transform Approach
Publication title
Volume
13
Issue
5
First page
200
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
e-ISSN
22277080
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-14
Milestone dates
2025-04-12 (Received); 2025-05-06 (Accepted)
Publication history
 
 
   First posting date
14 May 2025
ProQuest document ID
3212133184
Document URL
https://www.proquest.com/scholarly-journals/winding-fault-detection-power-transformers-based/docview/3212133184/se-2?accountid=208611
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-27
Database
ProQuest One Academic