Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

HIV-1 integrase (IN), an essential viral protein that catalyzes integration, also influences non-integration functions such as particle production and morphogenesis. The mechanism by which non-integration functions are mediated is not completely understood. Several factors influence these non-integration functions, including the ability of IN to bind to viral RNA. INI1 is an integrase-binding host factor that influences HIV-1 replication at multiple stages, including particle production and particle morphogenesis. IN mutants defective for binding to INI1 are also defective for particle morphogenesis, similar to RNA-binding-defective IN mutants. Studies have indicated that the highly conserved Repeat (Rpt) 1, the IN-binding domain of INI1, structurally mimics TAR RNA, and that Rpt1 and TAR RNA compete for binding to IN. Based on the RNA mimicry, we propose that INI1 may function as a “place-holder” for viral RNA to facilitate proper ribonucleoprotein complex formation required during the assembly and particle morphogenesis of the HIV-1 virus. These studies suggest that drugs that target IN/INI1 interaction may lead to dual inhibition of both IN/INI1 and IN/RNA interactions to curb HIV-1 replication.

Details

Title
TAR RNA Mimicry of INI1 and Its Influence on Non-Integration Function of HIV-1 Integrase
Author
Kalpana Ganjam V.  VIAFID ORCID Logo  ; Ernst, Emilie  VIAFID ORCID Logo  ; Haldar Swati  VIAFID ORCID Logo 
First page
693
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3212146093
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.