Full text

Turn on search term navigation

© 2025 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and objective

Speech disorders can arise from various causes, including congenital conditions, neurological damage, diseases, and other disorders. Traditionally, medical professionals have used changes in voice to diagnose the underlying causes of these disorders. With the advancement of artificial intelligence (AI), new possibilities have emerged in this field. However, most existing studies primarily focus on comparing voice data between normal individuals and those with speech disorders. Research that classifies the causes of these disorders within the abnormal voice data, attributing them to specific etiologies, remains limited. Therefore, our objective was to classify the specific causes of speech disorders from voice data resulting from various conditions, such as stroke and hearing impairments (HI).

Methods

We experimentally developed a deep learning model to analyze Korean speech disorder voice data caused by stroke and HI. Our goal was to classify the disorders caused by these specific conditions. To achieve effective classification, we employed the ResNet-18, Inception V3, and SEResNeXt-18 models for feature extraction and training processes.

Results

The models demonstrated promising results, with area under the curve (AUC) values of 0.839 for ResNet-18, 0.913 for Inception V3, and 0.906 for SEResNeXt-18, respectively.

Conclusions

These outcomes suggest the feasibility of using AI to efficiently classify the origins of speech disorders through the analysis of voice data.

Details

Title
Deep learning-based classification of speech disorder in stroke and hearing impairment
Author
Park, Joo Kyung; Mun, Sae Byeol; Young Jae Kim; Kim, Kwang Gi  VIAFID ORCID Logo 
First page
e0315286
Section
Research Article
Publication year
2025
Publication date
May 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3213204214
Copyright
© 2025 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.