Content area

Abstract

Accurate estimation of the finite population mean is a fundamental challenge in survey sampling, especially when dealing with large or complex populations. Traditional methods like simple random sampling may not always provide reliable or efficient estimates in such cases. Motivated by this, the current study explores complex sampling techniques to improve the precision and accuracy of mean estimators. Specifically, we employ two-stage and three-stage cluster sampling methods to develop unbiased estimators for the finite population mean. Building upon these, the next phase of the study formulates unbiased mean estimators using stratified two- and three-stage cluster sampling. To further enhance the precision of these estimators, a ranked-set sampling strategy is applied to the secondary and tertiary sampling stages. Additionally, unbiased variance estimators corresponding to the proposed mean estimators are derived. Real-world datasets are utilized to demonstrate the application of these complex survey sampling methodologies, with results showing that the mean estimates derived using ranked set sampling are more accurate than those obtained via simple random sampling.

Details

1009240
Title
Estimation of finite population mean in a complex survey sampling
Publication title
PLoS One; San Francisco
Volume
20
Issue
5
First page
e0324559
Publication year
2025
Publication date
May 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-09-16 (Received); 2025-04-27 (Accepted); 2025-05-28 (Published)
ProQuest document ID
3213205353
Document URL
https://www.proquest.com/scholarly-journals/estimation-finite-population-mean-complex-survey/docview/3213205353/se-2?accountid=208611
Copyright
© 2025 Abbas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-05-29
Database
ProQuest One Academic