Content area

Abstract

In this study, the ability of machine learning algorithms to predict tensile properties of both heat-treated and non-heat treated LPBFed AlSi10Mg alloy is investigated. The data was analyzed using various Machine Learning Regression (MLR) models such as Linear Regression (LR), Gaussian Process Regression (GPR), Random Forest Regression (RFR), and Decision Tree (DT). The AlSi10Mg alloys, heat-treated and non heat-treated, had different tensile characteristics. The tensile characteristics were forecasted using trained and evaluated MLR models. Because the performance of various MLR models has been verified by several performance indicators, such as Root Mean Square Error (RMSE), R2 (coefficient of determination), Mean Square Error (MSE), and Mean Absolute Error (MAE). Moreover, scatter plots were made for checking the accuracy of the forecast. The GPR model demonstrated better prediction performance than the other three models, i.e., higher R2 values and lower error values for the heat-treated samples. For predicting the UTS value of non-heat treated samples, the LR model performs very well with R2 of 1.000. In that case, GPR has the better predictive performance for the other tensile features in non-heat treated samples. Summing up, it is obvious that GPR is well capable of predicting tensile properties of AlSi10Mg alloy with high precision. This indicates how important GPR is to additive manufacturing to achieve great quality.

Details

1009240
Title
Predicting the tensile properties of heat treated and non-heat treated LPBFed AlSi10Mg alloy using machine learning regression algorithms
Publication title
PLoS One; San Francisco
Volume
20
Issue
6
First page
e0324049
Publication year
2025
Publication date
Jun 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-10-25 (Received); 2025-04-17 (Accepted); 2025-06-02 (Published)
ProQuest document ID
3215034480
Document URL
https://www.proquest.com/scholarly-journals/predicting-tensile-properties-heat-treated-non/docview/3215034480/se-2?accountid=208611
Copyright
© 2025 Jatti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-03
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic