Content area

Abstract

To accelerate energy efficiency improvement and green transition in industrial parks while addressing energy utilization and carbon reduction requirements, this study proposes a low-carbon economic dispatch model for integrated energy systems (IES) based on an enhanced multi-objective artificial hummingbird algorithm (MOAHA). The main contributions are threefold: First, we establish an optimized dispatch model incorporating combined cooling, heating and power (CCHP) systems, a refined two-stage power-to-gas (P2G) conversion process, and carbon capture technologies. Second, a stepwise carbon trading mechanism is introduced to further reduce carbon emissions from the IES. Third, a multi-strategy enhanced MOAHA is developed through three key improvements: 1) Logistic-sine fused chaotic mapping for population initialization to enhance distribution uniformity and solution quality; 2) Elite opposition-based learning and adaptive spiral migration foraging mechanisms to optimize individual positions and population diversity; 3) Simplex method integration to strengthen local search capabilities and optimization precision. Comprehensive case studies demonstrate the model’s effectiveness, achieving an 82.9% reduction in carbon emissions and 17.3% decrease in operational costs compared to conventional approaches. The proposed framework provides a technically viable solution for sustainable energy management in industrial parks, effectively balancing economic and environmental objectives.

Full text

Turn on search term navigation

© 2025 Wei, Zhang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.