Abstract
Background
Inosine monophosphate dehydrogenase 2 (IMPDH2) is an enzyme that catalyses the rate-limiting step of guanine nucleotides. In mouse embryonic stem cells (ESCs), IMPDH2 forms large multi-protein complexes known as rod-ring (RR) structures that dissociate when ESCs differentiate. Manual analysis of RR structures from confocal microscopy images, although possible, is not feasible on a large scale due to the quantity of RR structures present in each field of view. To address this analysis bottleneck, we have created a fully automatic RR image classification pipeline to segment, characterise and measure feature distributions of these structures in ESCs.
Results
We find that this model can automatically segment images with a Dice score of over 80% for both rods and rings for in-domain images compared to expert annotation, with a slight drop to 70% for datasets out of domain. Important feature measurements derived from these segmentations show high agreement with the measurements derived from expert annotation, achieving an R2 score of over 90% for counting the number of RRs over the dataset.
Conclusions
We have established for the first time a quantitative baseline for RR distribution in pluripotent ESCs and have made a pipeline available for training to be applied to other models in which RR remain an open topic of study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




