Content area

Abstract

Background

The classification of DNA sequences is pivotal in bioinformatics, essentially for genetic information analysis. Traditional alignment-based tools tend to have slow speed and low recall. Machine learning methods learn implicit patterns from data with encoding techniques such as k-mer counting and ordinal encoding, which fail to handle long sequences or sacrifice structural and sequential information. Frequency chaos game representation (FCGR) converts DNA sequences of arbitrary lengths into fixed-size images, breaking free from the constraints of sequence length while preserving more sequential information than other representations. However, existing works merely consider local information, ignoring long-range dependencies and global contextual information within FCGR image.

Results

We propose PCVR, a Pre-trained Contextualized Visual Representation for DNA sequence classification. PCVR encodes FCGR with a vision transformer into contextualized features containing more global information. To meet the substantial data requirements of the training of vision transformer and learn more robust features, we pre-train the encoder with a masked autoencoder. Pre-trained PCVR exhibits impressive performance on three datasets even with only unsupervised learning. After fine-tuning, PCVR outperforms existing methods on superkingdom and phylum levels. Additionally, our ablation studies confirm the contribution of the vision transformer encoder and masked autoencoder pre-training to performance improvement.

Conclusions

PCVR significantly improves DNA sequence classification accuracy and shows strong potential for new species discovery due to its effective capture of global information and robustness. Codes for PCVR are available at https://github.com/jiaruizhou/PCVR.

Details

1009240
Title
PCVR: a pre-trained contextualized visual representation for DNA sequence classification
Publication title
Volume
26
Pages
1-24
Publication year
2025
Publication date
2025
Section
Research
Publisher
Springer Nature B.V.
Place of publication
London
Country of publication
Netherlands
Publication subject
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-09
Milestone dates
2024-09-13 (Received); 2025-04-07 (Accepted); 2025-05-09 (Published)
Publication history
 
 
   First posting date
09 May 2025
ProQuest document ID
3216558097
Document URL
https://www.proquest.com/scholarly-journals/pcvr-pre-trained-contextualized-visual/docview/3216558097/se-2?accountid=208611
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-07
Database
ProQuest One Academic