It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
As personalized medicine becomes more prevalent, the objective measurement and visualization of an individual’s health status are becoming increasingly crucial. However, as the dimensions of data collected from each individual increase, this task becomes more challenging. The Health Space (HS) model provides a statistical framework for visualizing an individual’s health status on biologically meaningful axes. In our previous study, we developed HS models using statistical models such as logistic regression model (LRM) and the proportional odds model (POM). However, these statistical HS models are limited in their ability to accommodate complex non-linear biological relationships.
Methods
In order to model complex non-linear biological relationship, we developed deep learning HS models. Specifically, we formulated five distinct deep learning HS models: four standard binary deep neural networks (DNNs) for binary outcomes and one deep ordinal neural network (DONN) that accounts for the ordinality of the dependent variable. We trained these models using 32,140 samples from the Korea National Health and Nutrition Examination Survey (KNHANES) and validated them with data from the Ewha-Boramae cohort (862 samples) and the Korea Association Resource (KARE) project (3,199 samples).
Results
The proposed deep learning HS models were compared with the existing statistical HS model based on the POM. Deep learning HS model using DONN demonstrated the best performance in discriminating health status in both the training and external datasets.
Conclusion
We developed deep learning HS models to capture complex non-linear biological relationships in HS and compared their performance with our previously best-performing statistical HS model. The deep learning HS models show promise as effective tools for objectively and meaningfully visualizing an individual’s health status.
Clinical trial number
Not applicable.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer