It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objective
This study aimed to investigate the potential involvement of 5'-AMP-activated protein kinase (AMPK) in the pathogenesis of lower-extremity varicose veins (VV).
Methods
In this study, 8 patients with CEAP stage C6 chronic venous disease and 8 age-matched healthy controls were prospectively recruited to collect samples for preparation of subsequent experiments.None of the patients included in the molecular analyses were diagnosed with diabetes, as our analysis of 73,313 patients demonstrated that diabetes is generally not associated with VV. Western blotting was employed to quantify the levels of p-AMPK, G-actin, p-tubulin, p-HSP20, and 14–3-3 proteins in each sample.
Results
Epidemiological analyses revealed 5,262 patients with VVs among 714,789 inpatients. Of these patients, only 351 VV patients were diagnosed with type 2 DM, while 4,911 were not diagnosed with DM. Higher levels of AMPK activation were evident in VV samples in molecular analyses, with the p-AMPK level in the VV group being 1.98 ± 0.56 times higher than that in the NV group (n = 3, P < 0.001). G-actin levels in VV samples were additionally 2.14 ± 0.60 times higher than those in NV samples (n = 3, P < 0.001). Increased cofilin activation was also observed in VV samples, as evidenced by p-cofilin levels in the VV group that were 0.63 ± 0.10 times those in the NV group (n = 3, P < 0.001), with VV samples additionally exhibiting p-HSP20 levels that were 2.02 ± 0.59 times higher than those in NV samples (n = 3, P < 0.001).
Conclusion
These results suggest that AMPK Is likely to be involved lower extremity VV development, potentially by inducing vasodilation through the dysregulation of F-actin cytoskeletal dynamics in VSMCs, increasing cofilin activation, the displacement of which from 14–3-3 can lead to dephosphorylation mediated by HSP20,and then causes its dephosphorylation and increased activity, and thereby reducing cytoskeletal actin homeostasis and promoting vascular relaxation.These findings elucidate the possible regulatory role of AMPK phosphorylation in vein wall degeneration and provide a theoretical basis for further studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer