It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Productive lifespan is a critical economic trait for both dual-purpose and dairy cows, as it determines lifetime milk production. Xinjiang Brown cattle, a dual-purpose breed widely raised in China's Xinjiang region, have a population of nearly two million and play a vital role in the local economy. However, the molecular mechanisms influencing aging and productive lifespan in Xinjiang Brown cattle remain largely unknown. In this study, we collected white blood cell (leukocyte) transcriptome data from 66 Xinjiang Brown cattle, aged 31 to 160 months, to investigate the dynamic changes in their gene expression profiles across different ages and identify genes potentially influencing their aging process.
Results
A total of 1140 genes were identified as exhibiting a linear change in expression with age, while 697 genes showed non-linear changes, mainly enriched in immune and disease-related pathways. Linear genes were selected using elastic network regression to construct a transcriptomic clock and estimate the biological age of each sample. Individuals with older biological ages trend to highly express aging-related genes such as S100A8, while individuals with younger biological ages will highly express anti-aging genes such as BLVRB. We identified PGA5, LOC789748, ENSBTAG00000048555, and ENSBTAG00000050566 as crucial targets for anti-aging interventions, which exhibit reduced expression in biologically younger individuals and increased expression in biologically older ones. Performing sliding window analysis on non-linear genes, we elucidated changes in the expression of candidate genes at the age of 67 months, which are predominantly associated with endocrine pathways, such as GnRH and insulin secretion.
Conclusions
This study characterized the age-related gene expression changes in Xinjiang Brown cattle and developed a transcriptomic clock specifically for calculating their biological age. It provides a valuable tool for assessing the aging status of Xinjiang Brown cattle and identifies key genes that may influence their aging process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer