It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objective
Osteoporosis is a prevalent skeletal disorder characterized by reduced bone mineral density (BMD) and structural deterioration, resulting in increased fracture risk. Early diagnosis is crucial to prevent fractures and improve patient outcomes. This study investigates the diagnostic utility of morphometric and cortical indices derived from cone-beam computed tomography (CBCT) for identifying osteoporotic postmenopausal women who were candidates for dental implant therapy, with dual-energy X-ray absorptiometry (DXA) used as the reference standard.
Materials and methods
This cross-sectional study included 71 postmenopausal women, aged 50–79 years, who underwent CBCT imaging at the Oral and Maxillofacial Radiology Department of Hamadan University of Medical Sciences between 2022 and 2024. Participants with systemic conditions affecting bone metabolism were excluded. The morphometric indices—Computed Tomography Mandibular Index (CTMI), Computed Tomography Index Superior (CTI(S)), Computed Tomography Index Inferior (CTI(I)), and Computed Tomography Cortical Index (CTCI)—were measured at the mental foramen and antegonial regions using OnDemand3D Dental software. Bone mineral density (BMD) was assessed by DXA scans of the lumbar spine and femoral neck. In addition to traditional statistical analyses (Pearson’s correlation and one-way ANOVA with LSD test), a multilayer perceptron (MLP) neural network model was employed to evaluate the diagnostic power of CBCT indices.
Results
DXA results based on the femoral neck T-scores categorized 38 patients as normal, 32 as osteopenic, and one as osteoporotic, while lumbar spine T-scores identified 38 normal, 22 osteopenic, and 11 osteoporotic patients. Significant differences (p < 0.05) were observed in most CBCT-derived indices, with the CTMI index demonstrating the most marked variation, especially between normal and osteoporotic groups (p < 0.001). Moreover, significant positive correlations were found between the CBCT indices and DXA T-scores across the lumbar spine, femoral neck, and total hip regions. The neural network model achieved an overall diagnostic accuracy of 75%, with the highest predictive importance attributed to antegonial CTCI and CTMI indices.
Conclusion
This study highlights the significant correlation between CBCT-derived radiomorphometric indices such as CTMI, CTI(S), CTI(I), and CTCI at the mental foramen and antegonial regions and bone mineral density (BMD) in postmenopausal women. CBCT, particularly the CTMI index in the antegonial region, offers a cost-effective, non-invasive method for early osteoporosis detection, providing a valuable alternative to traditional screening methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer