Abstract

Background

Current phenotype-based diagnostic tools often struggle with accurate disease prioritization due to incomplete phenotypic data and the complexity of rare disease presentations. Additionally, they lack the ability to generate patient-centered clinical insights or recommend further symptoms for differential diagnosis.

Methods

We developed PhenoDP, a deep learning-based toolkit with three modules: Summarizer, Ranker, and Recommender. The Summarizer fine-tuned a distilled large language model to create clinical summaries from a patient’s Human Phenotype Ontology (HPO) terms. The Ranker prioritizes diseases by combining information content-based, phi-based, and semantic-based similarity measures. The Recommender employs contrastive learning to recommend additional HPO terms for enhanced diagnostic accuracy.

Results

PhenoDP’s Summarizer produces more clinically coherent and patient-centered summaries than the general-purpose language model FlanT5. The Ranker achieves state-of-the-art diagnostic performance, consistently outperforming existing phenotype-based methods across both simulated and real-world datasets. The Recommender also outperformed GPT-4o and PhenoTips in improving diagnostic accuracy when its suggested terms were incorporated into different ranking pipelines.

Conclusions

PhenoDP enhances Mendelian disease diagnosis through deep learning, offering precise summarization, ranking, and symptom recommendation. Its superior performance and open-source design make it a valuable clinical tool, with potential to accelerate diagnosis and improve patient outcomes. PhenoDP is freely available at https://github.com/TianLab-Bioinfo/PhenoDP.

Details

Title
PhenoDP: leveraging deep learning for phenotype-based case reporting, disease ranking, and symptom recommendation
Author
Wen, Baole; Shi, Sheng; Long, Yi; Dang, Yanan; Tian, Weidong
Pages
1-20
Section
Research
Publication year
2025
Publication date
2025
Publisher
BioMed Central
e-ISSN
1756994X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3216563848
Copyright
© 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.