Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by-sa/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The temperature and silicon content of molten blastfurnace iron are directly related to its quality. Therefore, creating an effective prediction model for these parameters is crucial. To address these issues, an Improved Arithmetic Optimization Twin Support Vector Machine for Regression (LAOA-TSVR) model was developed to predict the temperature and silicon content of molten blast furnace iron. First, SPSS was used to perform a correlation analysis and identify the main influencing factors. Secondly, the model was compared with three common prediction models to verify its prediction performance: Back Propagation Neural Network (BP), Support Vector Regression (SVR), and Twin Support Vector Machine for Regression (TSVR). Preliminary results indicate that the prediction accuracy of the LAOA-TSVR model is significantly higher than that of the other models. Finally, the model was applied to the actual production process of an iron mill for a total of 200 furnaces. The results show that the hit rates for molten iron temperature and silicon content are within the error ranges of ±5% and ±0.5% at 92.12% and 92.53%, respectively, with a corresponding double-hit rate of 85.32%. The model effectively fulfills the production requirements of an iron mill and provides valuable information for the production process in the blastfurnace.

Alternate abstract:

Temperatura i sadržaj silicijuma u rastopljenom železu iz visoke peći direktno su povezani s njegovim kvalitetom. Stoga je kreiranje efikasnog modela za predikciju ovih parametara od ključnog značaja. Kako bi se odgovorilo na ove izazove, razvijen je model sa unapređenim algoritmom aritmetičke optimizacije za TSVR mašinu (LAOA-TSVR) za predikciju temperature i sadržaja silicijuma u rastopljenom železu iz visoke peći. Prvo, korišćenjem SPSS-a sprovedena je analiza korelacije radi identifikacije glavnih faktora uticaja. Zatim je model upoređen sa tri uobičajena modela za predikciju radi verifikacije performansi: neuronskom mrežom sa povratnim širenjem (BP), regresijom sa mašinom podrške (SVR) i TSVR mašinom. Preliminarni rezultati pokazuju da je tačnost predikcije modela LAOA-TSVR značajno veća u poređenju sa drugim modelima. Na kraju, model je primenjen u stvarnom proizvodnom procesu u železari na uzorku od 200 visokopećnih procesa. Rezultati pokazuju da su stepeni uspešnosti za temperaturu rastopljenog železa i sadržaj silicijuma unutar greške od ±5% i ±0,5% na nivou od 92,12% i 92,53%, respektivno, dok je dvostruki stepen uspešnosti 85,32%. Model efikasno ispunjava proizvodne zahteve železare i pruža dragocene informacije za proizvodni proces visoke peći.

Details

Title
PREDICTION MODEL OF BLAST FURNACE MOLTEN IRON TEMPERATURE AND MOLTEN IRON SILICON CONTENT BASED ON IMPROVED ARITHMETIC OPTIMIZATION TWIN SUPPORT VECTOR MACHINE FOR REGRESSION
Author
Shi, C-Y 1 ; Tao, P-L 1 ; Li, S-D 2 ; Wang, Y-K 1 ; Zhang, L 1 

 School of Electrical and Automation Engineering, Liaoning Institute of Science and Technology, Benxi, China 
 Special Steel Division of Benxi Steel Plate Co. Benxi, China 
Pages
407-419
Publication year
2024
Publication date
2024
Publisher
Technical Faculty Bor, University of Belgrade
ISSN
14505339
e-ISSN
22177175
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3216946673
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by-sa/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.