Content area
Abstract
In this article, we study the Lotka–Volterra planar quadratic differential systems. We denote by LV systems all systems which can be brought to a Lotka–Volterra system by an affine transformation and time homotheties. All these systems possess invariant straight lines. We classify the family of LV systems according to their geometric properties encoded in the configurations of invariant straight lines which these systems possess. We obtain a total of 65 such configurations which are distinguished, roughly speaking, by the multiplicity of their invariant lines and by the multiplicities of the singularities of the systems located on these lines. We determine an algebraic subvariety of





