Content area

Abstract

Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation.

Details

1009240
Business indexing term
Title
A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism
Publication title
PLoS One; San Francisco
Volume
20
Issue
6
First page
e0325911
Publication year
2025
Publication date
Jun 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2024-12-31 (Received); 2025-05-21 (Accepted); 2025-06-10 (Published)
ProQuest document ID
3217665564
Document URL
https://www.proquest.com/scholarly-journals/plaque-recognition-algorithm-coronary-oct-images/docview/3217665564/se-2?accountid=208611
Copyright
© 2025 Meng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-13
Database
ProQuest One Academic