Content area

Abstract

This study presents a peridynamic model formulated using the micromodulus function and bond deformation. The model is derived by establishing energy equivalence between a modified virtual internal bond (VIB) and a peridynamic bond. To address surface effects in peridynamics, a stress-based correction method utilizing nodal stress is introduced, enhancing the model’s numerical accuracy. The model was implemented using an in-house Cython code and validated through the following numerical examples: a plate under traction, a plate with a hole under displacement boundary conditions, a uniaxial compression test on granite with a deformation-based mixed-mode bond failure criterion, and a comparison with an existing strain-based peridynamic model. For the plate under traction, the deformation-based method performed similarly to the strain-based model in the loading direction and better in the unloaded direction. The stress concentration obtained from the proposed model (240 MPa) near the hole in the rectangular plate simulation differed from FEM (252 MPa) by 4.7%. The granite test predicted a UCS of 111.88 MPa and a Young’s modulus of 20.67 GPa, with errors of 0.1% and 1.57%, respectively, compared to the experimental data.

Details

1009240
Title
A Deformation-Based Peridynamic Model: Theory and Application
Publication title
Buildings; Basel
Volume
15
Issue
11
First page
1931
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-03
Milestone dates
2025-04-30 (Received); 2025-05-29 (Accepted)
Publication history
 
 
   First posting date
03 Jun 2025
ProQuest document ID
3217720094
Document URL
https://www.proquest.com/scholarly-journals/deformation-based-peridynamic-model-theory/docview/3217720094/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-11
Database
ProQuest One Academic