Content area

Abstract

Feature selection has been a fundamental research area for both conventional and contemporary machine learning since the beginning of predictive analytics. From early statistical methods, such as principal component analysis, to more recent and data-driven approaches, such as deep unsupervised feature learning, selecting input features to achieve the best objective performance has been a critical component of any machine learning application. In this study, we propose a novel, easily replicable, and robust approach called probability-weighted feature selection (PWFS), which randomly selects a subset of features prior to each training–testing regimen and assigns probability weights to each feature based on an objective performance metric such as accuracy, mean-square error, or area under the curve for the receiver operating characteristic curve (AUC–ROC). Using the objective metric scores and weight assignment techniques based on the golden ratio led iteration method, the features that yield higher performance are incrementally more likely to be selected in subsequent train–test regimens, whereas the opposite is true for features that yield lower performance. This probability-based search method has demonstrated significantly faster convergence to a near-optimal set of features compared to a purely random search within the feature space. We compare our method with an extensive list of twelve popular feature selection algorithms and demonstrate equal or better performance on a range of benchmark datasets. The specific approach to assigning weights to the features also allows for expanded applications in which two correlated features can be included in separate clusters of near-optimal feature sets for ensemble learning scenarios.

Details

1009240
Title
PWFS: Probability-Weighted Feature Selection
Publication title
Volume
14
Issue
11
First page
2264
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-31
Milestone dates
2025-03-14 (Received); 2025-05-28 (Accepted)
Publication history
 
 
   First posting date
31 May 2025
ProQuest document ID
3217725503
Document URL
https://www.proquest.com/scholarly-journals/pwfs-probability-weighted-feature-selection/docview/3217725503/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-11
Database
ProQuest One Academic