Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cloud Data Centers (CDCs) are an essential component of the infrastructure for powering the digital life of modern society, hosting and processing vast amounts of data and enabling services such as streaming, Artificial Intelligence (AI), and global connectivity. Given this importance, their energy efficiency is a top priority, as they consume significant amounts of electricity, contributing to operational costs and environmental impact. Efficient CDCs reduce energy waste, lower carbon footprints, and support sustainable growth in digital services. Consequently, energy efficiency metrics are used to measure how effectively a CDC utilizes energy for computing versus cooling and other overheads. These metrics are essential because they guide operators in optimizing resource use, reducing costs, and meeting regulatory and environmental goals. To this end, this paper reviews more than 25 energy efficiency metrics and more than 250 literature references to CDCs, different energy-consuming components, and configuration setups. Then, some real-world case studies of corporations that use these metrics are presented. Thereby, the challenges and limitations are investigated for each metric, and associated future research directions are provided. Prioritizing energy efficiency in CDCs, guided by these energy efficiency metrics, is essential for minimizing environmental impact, reducing costs, and ensuring sustainable scalability for the digital economy.

Details

Title
A Systematic Review of Energy Efficiency Metrics for Optimizing Cloud Data Center Operations and Management
Author
Safari Ashkan 1   VIAFID ORCID Logo  ; Sorouri Hoda 2   VIAFID ORCID Logo  ; Rahimi Afshin 1   VIAFID ORCID Logo  ; Oshnoei Arman 2   VIAFID ORCID Logo 

 Mechanical, Automotive and Materials Engineering Department, University of Windsor, Windsor, ON N9B 3P4, Canada; [email protected] 
 Department of Energy, Aalborg University, 9220 Aalborg, Denmark; [email protected] 
First page
2214
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217732142
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.