It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Prediction of chemical yields is crucial for exploring untapped chemical reactions and optimizing synthetic pathways for targeted compounds. Recently, graph neural networks have proven successful in achieving high predictive accuracy. However, they remain intrinsically black-box models, offering limited interpretability. Understanding how each reaction component contributes to the yield of a chemical reaction can help identify critical factors driving the success or failure of reactions, thereby potentially revealing opportunities for yield optimization. In this study, we present a novel method for interpretable chemical reaction yield prediction, which represents the yield of a chemical reaction as a simple summation of component-wise contributions from individual reaction components. To build an interpretable prediction model, we introduce a graph neural additive network architecture, wherein shared neural networks process individual reaction components in an input reaction while leveraging a reaction-level embedding to derive their respective contributions. The predicted yield is obtained by summing these component-wise contributions. The model is trained using a learning objective designed to effectively quantify the contributions of individual components by amplifying the influence of significant components and suppressing that of less influential components. The experimental results on benchmark datasets demonstrated that the proposed method achieved both high predictive accuracy and interpretability, making it suitable for practical use in synthetic pathway design for real-world applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Samsung Advanced Institute of Technology , Samsung Electronics Co. Ltd 130 Samsung-ro, Yeongtong-gu, Suwon 16678, Republic of Korea
2 Department of Industrial Engineering , Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea