Content area
Achieving high-order accuracy in finite difference/spectral methods for space-time fractional differential equations often relies on very restrictive and usually unrealistic smoothness assumptions in the spatial and/or temporal domains. For spatial discretization, spectral methods using smooth basis functions are commonly employed. However, spatial–fractional derivatives pose challenges, as they often lack guaranteed spatial smoothness, requiring non-smooth basis functions. In the temporal domain, finite difference schemes on uniformly graded meshes are commonly employed; however, achieving accuracy remains challenging for non-smooth solutions. In this paper, an efficient algorithm is adopted to improve the accuracy of finite difference/Pertrov–Galerkin spectral schemes for a time-space fractional reaction–diffusion equation, with a hyper-singular integral fractional Laplacian and non-smooth solutions in both time and space domains. The Pertrov–Galerkin spectral method is adapted using non-smooth generalized basis functions to discretize the spatial variable, and the L1 scheme on a non-uniform graded mesh is used to approximate the Caputo fractional derivative. The unconditional stability and convergence are established. The rate of convergence is
Details
Convergence;
Smoothness;
Mathematical analysis;
Brownian motion;
Finite difference method;
Reaction-diffusion equations;
Basis functions;
Approximation;
Numerical analysis;
Methods;
Finite element analysis;
Fractional calculus;
Differential equations;
Galerkin method;
Spectral methods
