Content area

Abstract

Achieving high-order accuracy in finite difference/spectral methods for space-time fractional differential equations often relies on very restrictive and usually unrealistic smoothness assumptions in the spatial and/or temporal domains. For spatial discretization, spectral methods using smooth basis functions are commonly employed. However, spatial–fractional derivatives pose challenges, as they often lack guaranteed spatial smoothness, requiring non-smooth basis functions. In the temporal domain, finite difference schemes on uniformly graded meshes are commonly employed; however, achieving accuracy remains challenging for non-smooth solutions. In this paper, an efficient algorithm is adopted to improve the accuracy of finite difference/Pertrov–Galerkin spectral schemes for a time-space fractional reaction–diffusion equation, with a hyper-singular integral fractional Laplacian and non-smooth solutions in both time and space domains. The Pertrov–Galerkin spectral method is adapted using non-smooth generalized basis functions to discretize the spatial variable, and the L1 scheme on a non-uniform graded mesh is used to approximate the Caputo fractional derivative. The unconditional stability and convergence are established. The rate of convergence is ONμγ+Kmin{ρβ,2β}, achieved without requiring additional regularity assumptions on the solution. Finally, numerical results are provided to validate our theoretical findings.

Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.