Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Long-span structures are highly vulnerable to wind-induced vibrations, which can pose a significant threat to their structural stability and safety. This paper introduces a novel monitoring method that combines Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technology with Auto-Regressive Moving Average (ARMA) models, providing an innovative approach to monitoring wind-induced vibrations in large-span bridges. While previous studies have focused on individual techniques, this integrated approach is largely unexplored and offers a new perspective for structural health monitoring. By collating a series of SAR images and examining phase alterations on the bridge surface, a three-tiered detection methodology is employed to identify stable points accurately. The surface deformation data are then analyzed alongside wind speed and weather data to construct a comprehensive model elucidating the relationship between the bridge and vibrations. The ARMA model is used for real-time monitoring and assessment. Experimental results demonstrate that this method offers precise, real-time monitoring of wind-resistant stability. By leveraging the spatial accuracy and long-term monitoring capability of PS-InSAR, along with the time-series forecasting strength of ARMA models, the method enables data-driven analysis of bridge vibrations. It also provides comprehensive coverage under various conditions, enhancing the safety of long-span bridges through advanced predictive analytics.

Details

Title
A Novel Monitoring Method of Wind-Induced Vibration and Stability of Long-Span Bridges Based on Permanent Scatterer Interferometric Synthetic Aperture Radar Technology
Author
Ma Jiayue 1 ; Xue Xiaojun 1 ; Guoliang, Zhi 2   VIAFID ORCID Logo  ; Zheng Haoyang 2 ; Zhu Hanqing 2 

 Electric Power and Architecture College, Shanxi University, Taiyuan 030031, China; [email protected] 
 School of Civil Engineering, Southeast University, Nanjing 210096, China; [email protected] (H.Z.); [email protected] (H.Z.) 
First page
3316
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217746800
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.