Content area

Abstract

Path-planning algorithms for planetary rovers are critical for autonomous robotic exploration, enabling the efficient and safe traversal of complex and dynamic extraterrestrial terrains. Unlike terrestrial mobile robots, planetary rovers must navigate highly unpredictable environments influenced by diverse factors such as terrain variability, obstacles, illumination conditions, and temperature fluctuations, necessitating advanced path-planning strategies to ensure mission success. This review comprehensively synthesizes recent advancements in planetary rover path-planning algorithms. First, we categorize these algorithms from a constraint-oriented perspective, distinguishing between internal rover state constraints and external environmental constraints. Next, we examine rule-based path-planning approaches, including graph search-based methods, potential field methods, sampling-based techniques, and dynamic window approaches, analyzing representative algorithms in each category. Subsequently, we explore bio-inspired path-planning methods, such as evolutionary algorithms, fuzzy computing, and machine learning-based approaches, with a particular emphasis on the latest developments and prospects of machine learning techniques in planetary rover navigation. Finally, we synthesize key insights from existing algorithms and discuss future research directions, highlighting their potential applications in planetary exploration missions.

Details

1009240
Business indexing term
Title
A Comprehensive Review of Path-Planning Algorithms for Planetary Rover Exploration
Publication title
Volume
17
Issue
11
First page
1924
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-31
Milestone dates
2025-03-25 (Received); 2025-05-27 (Accepted)
Publication history
 
 
   First posting date
31 May 2025
ProQuest document ID
3217747260
Document URL
https://www.proquest.com/scholarly-journals/comprehensive-review-path-planning-algorithms/docview/3217747260/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-17
Database
ProQuest One Academic