Content area

Abstract

We developed and examined the performance of a two-stage random-effects meta-analysis estimator for synthesizing published estimates of the value per statistical life (VSL). The meta-estimation approach accommodates unbalanced panels with one or multiple observations from each independent group of primary estimates, and distinguishes between sampling and non-sampling sources of error, both within and between groups. We used Monte Carlo simulation experiments to test the performance of the meta-estimator on constructed datasets. Simulation results indicate that, when applied to datasets of modest size, the approach performs best when the within-group non-sampling error variances are assumed to be homogeneous among groups. This allows for two levels of non-sampling errors while preserving degrees of freedom and therefore increasing statistical efficiency. Simulation results also show that the estimator compares favorably to several other commonly used meta-analysis estimators, including other two-stage estimators. As a demonstration, we applied the approach to a pre-existing meta-dataset including 113 VSL estimates assembled from 10 revealed preference and 9 stated preference studies conducted in the U.S. and published between 1999 and 2019.

Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.