It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The study of aerosol dispersion in indoor environments is essential to understanding and mitigating airborne virus transmission, such as SARS-CoV-2. Computational Fluid Dynamics (CFD) has emerged as a valuable tool for investigating aerosol dispersion, providing an alternative to costly experimental methods. In this study, we investigated the performance of four (4) Reynolds-averaged Navier-Stokes (RANS) turbulence models in predicting aerosol dispersion from a human body coughing in a small, ventilated indoor environment. We compared the Standard, RNG, Realizable k-ϵ models and the SST k- ω model using the same boundary conditions. We initially observed that the horizontal distance of the coughed aerosols after 10.2s dispersion time was substantially shorter with the standard k-ϵ turbulence compared to the other three turbulence models compared to the SST k-ω model, the RNG, and realizable k-ϵ models exhibit a high degree of similarity in their dispersion patterns. Specifically, we observed that the aerosols dispersed horizontally faster with the RNG and Realizable k-ϵ models. In conclusion, when compared to qualitative data from the literature, our observations exclude the standard k-ϵ turbulence. However, to select the most appropriate turbulence model for capturing the cough flow and aerosol dispersion dynamics, further detailed validation against both quantitative and qualitative data is needed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer