It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Homogeneous coordinates offer a robust mathematical framework for representing and executing geometric transformations in image processing, computer vision, robotics, and computer graphics. By embedding Euclidean space into a higher-dimensional projective space, they provide a unified mechanism for handling affine transformations, such as translation, rotation, scaling, and shear, as well as projective transformations like perspective projection. This study explores the practical applications of homogeneous coordinates within the MATLAB environment, leveraging its matrix manipulation capabilities to implement these transformations efficiently. Homogeneous coordinates simplify complex transformation pipelines through matrix concatenation, enabling seamless execution of combined operations while preserving computational efficiency and accuracy. Key applications demonstrated include image registration, warping, rectification, 3D modeling, and camera calibration, emphasizing their critical role in medical imaging, virtual reality, and augmented reality. MATLAB's intuitive programming environment and advanced visualization tools further enhance the accessibility and applicability of these techniques. This article provides detailed explanations, MATLAB code implementations, and visual demonstrations to bridge the gap between theoretical foundations and real-world applications, making it an invaluable resource for researchers, practitioners, and students in the fields of image processing and computer vision.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, Faculty of Science, Nangarhar University, Nangarhar, Afghanistan
2 Department of Physics, Faculty of Science, Nangarhar University, Nangarhar Afghanistan




