Full Text

Turn on search term navigation

© 2025 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thyroid hormones control crucial physiological activities, such as metabolism, oxidative stress, erythropoiesis, thermoregulation, and organ development. Hormonal imbalances may cause serious conditions like cognitive impairment, depression, and nervous system damage. Traditional diagnostic techniques, based on hormone level measurements (TSH, T3, FT4, T4, and FTI), are usually lengthy and laborious. This study uses machine learning (ML) algorithms and feature selection based on GA to improve the accuracy and efficiency of diagnosing thyroid disorders using the UCI thyroid dataset. Five ML algorithms-LR, RF, SVM, AB, and DT- were tested using two paradigms: (1) default classifiers and (2) hybrid GA-ML models- GA-RF, GA-LR, GA-SVM, GA-DT, and GA-AB. The data pre-processed included handling missing values, feature scaling, and correlation analysis. In this case, the performance metrics used for model evaluation are accuracy, F1 Score, sensitivity, specificity, precision, and Cohen’s Kappa with 80% of the dataset to train the model and the rest 20% used to test it. Among the non-hybrid models, RF achieved the highest accuracy, which was 93.93%. The hybrid GA-RF model outperformed all others, achieving a remarkable accuracy of 97.21%, along with superior metrics across all the evaluated parameters. These findings highlight the diagnostic potential of the GA-RF model in providing faster, more accurate, and reliable thyroid disorder detection. The research illustrated the potential of the hybrid GA-ML approaches to improving the clinical diagnostic process while proposing a strong and scalable approach towards thyroid disorder identification.

Details

Title
Comprehensive framework for thyroid disorder diagnosis: Integrating advanced feature selection, genetic algorithms, and machine learning for enhanced accuracy and other performance matrices
Author
Kumar, Ankur  VIAFID ORCID Logo  ; Dhanka, Sanjay; Sharma, Abhinav; Sharma, Anchal; Maini, Surita; Fahlevi, Mochammad  VIAFID ORCID Logo  ; Rabby, Fazla  VIAFID ORCID Logo  ; Aljuaid, Mohammed; Bansal, Rohit
First page
e0325900
Section
Research Article
Publication year
2025
Publication date
Jun 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3222295502
Copyright
© 2025 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.