Full text

Turn on search term navigation

© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The presence of warm boundary layer stratiform clouds over the eastern North Atlantic (ENA) region is commonly influenced by the Azores High, especially during the summer season. To investigate comprehensive aerosol–cloud interactions, this study employs the Weather Research and Forecasting model coupled with a chemistry component (WRF-Chem), incorporating aerosol chemical components that are relevant to the formation of cloud condensation nuclei (CCN) and accounting for aerosol spatiotemporal variation. This study focuses on aerosol indirect effects, particularly the long-range transport of aerosols, in the ENA region under three different weather regimes: a ridge with a surface high-pressure system, a post-trough with a surface high-pressure system, and a weak trough. The WRF-Chem simulations conducted at a near-large-eddy scale offer valuable insights into the model's performance, especially in terms of its ability to use high spatial resolution to capture mesoscale cloud features across various weather regimes. Our result shows that introducing 5 times more aerosols to either non-precipitating or precipitating clouds significantly increases ambient CCN numbers, resulting in, to varying degrees, higher liquid water path (LWP) values. The substantial aerosol–cloud interaction especially occurs in the precipitating clouds and demonstrates the susceptibility of the LWP to changes in CCN under different regimes. Conversely, thin, non-rain clouds at the edges of a cloud system are prone to evaporation, exhibiting an aerosol drying effect. The aerosols released during this process transition back to the accumulation mode, facilitating future activation. This dynamic behavior is not adequately represented in prescribed-aerosol simulations.

Details

Title
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Author
Hsiang-He, Lee 1   VIAFID ORCID Logo  ; Zheng, Xue 1   VIAFID ORCID Logo  ; Qiu, Shaoyue 1   VIAFID ORCID Logo  ; Wang, Yuan 2   VIAFID ORCID Logo 

 Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA 
 Department of Earth System Science, Stanford University, Stanford, CA, USA 
Pages
6069-6091
Publication year
2025
Publication date
2025
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3222297190
Copyright
© 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.