Content area
Background:Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.
Objective:This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.
Methods:Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.
Results:The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F1-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.
Conclusions:This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method’s applicability to other domains and languages.
Details
Electronic health records;
Health care;
Application programming interface;
Extraction;
Data mining;
Clinical decision making;
Validation studies;
Scarcity;
Medical research;
Fines & penalties;
Third party;
Data collection;
Privacy;
Acknowledgment;
Annotations;
Medical records;
Large language models;
Chatbots;
Decision support systems;
Care records;
Health services;
Archives & records;
Recognition;
Medical decision making;
Natural language processing;
Data;
Languages;
Patients;
Information retrieval;
Language modeling;
Estonian language
