Content area

Abstract

Background:Chronic diseases are a major global health burden, accounting for nearly three-quarters of the deaths worldwide. Large language models (LLMs) are advanced artificial intelligence systems with transformative potential to optimize chronic disease management; however, robust evidence is lacking.

Objective:This review aims to synthesize evidence on the feasibility, opportunities, and challenges of LLMs across the disease management spectrum, from prevention to screening, diagnosis, treatment, and long-term care.

Methods:Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, 11 databases (Cochrane Central Register of Controlled Trials, CINAHL, Embase, IEEE Xplore, MEDLINE via Ovid, ProQuest Health & Medicine Collection, ScienceDirect, Scopus, Web of Science Core Collection, China National Knowledge Internet, and SinoMed) were searched on April 17, 2024. Intervention and simulation studies that examined LLMs in the management of chronic diseases were included. The methodological quality of the included studies was evaluated using a rating rubric designed for simulation-based research and the risk of bias in nonrandomized studies of interventions tool for quasi-experimental studies. Narrative analysis with descriptive figures was used to synthesize the study findings. Random-effects meta-analyses were conducted to assess the pooled effect estimates of the feasibility of LLMs in chronic disease management.

Results:A total of 20 studies examined general-purpose (n=17) and retrieval-augmented generation-enhanced LLMs (n=3) for the management of chronic diseases, including cancer, cardiovascular diseases, and metabolic disorders. LLMs demonstrated feasibility across the chronic disease management spectrum by generating relevant, comprehensible, and accurate health recommendations (pooled accurate rate 71%, 95% CI 0.59-0.83; I2=88.32%) with retrieval-augmented generation-enhanced LLMs having higher accuracy rates compared to general-purpose LLMs (odds ratio 2.89, 95% CI 1.83-4.58; I2=54.45%). LLMs facilitated equitable information access; increased patient awareness regarding ailments, preventive measures, and treatment options; and promoted self-management behaviors in lifestyle modification and symptom coping. Additionally, LLMs facilitate compassionate emotional support, social connections, and health care resources to improve the health outcomes of chronic diseases. However, LLMs face challenges in addressing privacy, language, and cultural issues; undertaking advanced tasks, including diagnosis, medication, and comorbidity management; and generating personalized regimens with real-time adjustments and multiple modalities.

Conclusions:LLMs have demonstrated the potential to transform chronic disease management at the individual, social, and health care levels; however, their direct application in clinical settings is still in its infancy. A multifaceted approach that incorporates robust data security, domain-specific model fine-tuning, multimodal data integration, and wearables is crucial for the evolution of LLMs into invaluable adjuncts for health care professionals to transform chronic disease management.

Trial Registration:PROSPERO CRD42024545412; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024545412

Details

1009240
Business indexing term
Title
Unveiling the Potential of Large Language Models in Transforming Chronic Disease Management: Mixed Methods Systematic Review
Publication title
Volume
27
First page
e70535
Publication year
2025
Publication date
2025
Section
Digital Health Reviews
Publisher
Gunther Eysenbach MD MPH, Associate Professor
Place of publication
Toronto
Country of publication
Canada
e-ISSN
1438-8871
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-04-16
Milestone dates
2024-12-24 (Preprint first published); 2024-12-24 (Submitted); 2025-01-29 (Revised version received); 2025-03-19 (Accepted); 2025-04-16 (Published)
Publication history
 
 
   First posting date
16 Apr 2025
ProQuest document ID
3222368885
Document URL
https://www.proquest.com/scholarly-journals/unveiling-potential-large-language-models/docview/3222368885/se-2?accountid=208611
Copyright
© 2025. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-11-07
Database
ProQuest One Academic