Content area

Abstract

In probabilistic modeling across engineering, finance, and telecommunications, sums of lognormal random variables frequently occur, yet no closed-form expression exists for their distribution. This study systematically evaluates three approximation methods—Wilkinson (W), Schwartz & Yeh (SY), and Inverse (I)—for correlated lognormal variates across varying sample sizes and correlation structures. Using Monte Carlo simulations with 5, 15, 25, and 30 samples and correlation coefficients of 0.3, 0.6, and 0.9, we compared Type I error rates through Anderson-Darling goodness-of-fit tests. Our findings demonstrate that the Wilkinson approximation consistently outperforms the other methods for correlated variates, exhibiting the lowest Type I error rates across all tested scenarios. This contradicts some previous findings in telecommunications literature where SY was preferred. We validated these results using real-world datasets from engineering (fatigue life of ball bearings) and finance (stock price correlations), confirming the Wilkinson approximation’s superior performance through probability density function comparisons. This research provides practical guidance for selecting appropriate approximation methods when modeling correlated lognormal sums in diverse applications.

Details

1009240
Title
On the approximation of sum of lognormal for correlated variates and implementation
Publication title
PLoS One; San Francisco
Volume
20
Issue
6
First page
e0325647
Publication year
2025
Publication date
Jun 2025
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Milestone dates
2025-01-26 (Received); 2025-05-17 (Accepted); 2025-06-23 (Published)
ProQuest document ID
3223559030
Document URL
https://www.proquest.com/scholarly-journals/on-approximation-sum-lognormal-correlated/docview/3223559030/se-2?accountid=208611
Copyright
© 2025 Mohd Yunus et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-24
Database
ProQuest One Academic