Content area

Abstract

This study presents a novel, two-stage algorithm that minimizes the number of machines and operators required to produce multiple product types repeatedly in cyclic scheduling. Our algorithm treats the problem of minimum machines as a bin packing problem (BPP), and the problem of determining the number of operators required is also modeled as the BPP, but with constraints. The BPP is NP-hard, but with suitable heuristic algorithms, the proposed model allocates multiple product types to machines and multiple machines to operators without overlapping setup times (machine interference). The production schedule on each machine is represented as a circle (donut). By using lower bounds, it is possible to assess whether the number of machines required by our model is optimal; if not, the optimality gap can be quantified. The algorithm has been validated using real-world data from an industrial facility producing 17 types of products. The results of our algorithm led to significant cost savings and improved scheduling performance. The outcomes demonstrate the effectiveness of the proposed algorithm in optimizing resource utilization by reducing the number of machines and operators required. Although this study focuses on a manufacturing system, the model can also be applied to other contexts.

Details

1009240
Business indexing term
Title
A Two-Stage Bin Packing Algorithm for Minimizing Machines and Operators in Cyclic Production Systems
Publication title
Algorithms; Basel
Volume
18
Issue
6
First page
367
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-17
Milestone dates
2025-04-21 (Received); 2025-06-11 (Accepted)
Publication history
 
 
   First posting date
17 Jun 2025
ProQuest document ID
3223864745
Document URL
https://www.proquest.com/scholarly-journals/two-stage-bin-packing-algorithm-minimizing/docview/3223864745/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-25
Database
2 databases
  • Coronavirus Research Database
  • ProQuest One Academic