Content area

Abstract

Real-time information on key state variables during fermentation is crucial for the effective optimization and control of bioprocesses. Specialized sensors for online or at-line monitoring of these variables are often associated with high costs, especially during early-stage process optimization. In this study, fed-batch processes of an L-phenylalanine (L-phe) production process were carried out using a recombinant Escherichia coli strain under varying inducer concentrations. The available online process variables from the L-phe production process were used to estimate the state variables biomass, glycerol, L-phe, acetate, and L-tyrosine (L-tyr) via partial least-squares regression (PLSR). These predictions were then incorporated as measurements into an unscented Kalman filter (UKF). The filter uses a coarse-grained model as a state estimator, which, in addition to extracellular variables, also provides information on intracellular states. The results of PLSR showed very good prediction accuracy for L-phe, moderate accuracy for glycerol, biomass, and L-tyr and poor performance for acetate concentrations. In combination with the UKF, the estimation of the L-phe concentrations was greatly improved compared to the CGM, whereas further improvement is still needed for the remaining state variables.

Details

1009240
Title
A Hybrid Soft Sensor Approach Combining Partial Least-Squares Regression and an Unscented Kalman Filter for State Estimation in Bioprocesses
Author
Publication title
Volume
12
Issue
6
First page
654
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-15
Milestone dates
2025-04-15 (Received); 2025-06-12 (Accepted)
Publication history
 
 
   First posting date
15 Jun 2025
ProQuest document ID
3223876903
Document URL
https://www.proquest.com/scholarly-journals/hybrid-soft-sensor-approach-combining-partial/docview/3223876903/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-25
Database
ProQuest One Academic