Content area

Abstract

Global warming has increasingly become a widespread concern of the international community, and one of the key approaches to achieving carbon neutrality goals lies in the carbon sequestration capacity of oceans. Therefore, scientifically and accurately measuring the carbon sink capacity of marine fisheries and studying its spatial effects are particularly crucial for mitigating global climate change. Marine fisheries encompass categories such as fish, shellfish, algae, and crustaceans. Given that marine fisheries-based carbon sinks are non-feed fisheries, with cultivated shellfish and algae being highly representative, this paper primarily focuses on the carbon sink capacity of shellfish and algae as the main assessment criteria for marine fisheries carbon sinks, aiming to apply this research to other countries worldwide to assist in addressing global warming. Thus, based on panel data of shellfish and algae cultivation in nine coastal provinces of China from 2007 to 2021, this paper employs the “removable carbon sink” model to calculate the carbon sink capacity of Chinese marine shellfish and algae aquaculture industry and utilizes the spatial Durbin model to analyze its spatial effects. The research findings are as follows: (1) The spatial distribution of carbon sink capacity in China’s marine shellfish and algae is uneven. (2) Moran’s Index indicates that the carbon sink capacity of marine shellfish and algae exhibits positive spatial correlation, but the degree of spatial agglomeration is unstable. Fujian Province has the highest average carbon sink capacity at 446,451.21 tons, while regions such as Hainan, Hebei, and Jiangsu have relatively lower average carbon sink capacities, with Hainan Province’s being only 3627.57 tons, sufficiently demonstrating the characteristic of uneven spatial distribution. (3) Through decomposition using the spatial Durbin model, it is found that the direct effects of marine shellfish and algae aquaculture production, technological input, technological promotion, and fishery disaster situations are positive, with the result for marine shellfish and algae aquaculture production being 1.617, significantly positive at the 1% level. The result for labor input is −0.847, with a negative direct effect. From the perspective of indirect effects, the indirect effects of marine shellfish and algae aquaculture production, technological input, and technological promotion are positive, with aquaculture production at 1.185, still significantly positive at the 1% level. The result for labor input is −2.140, with a negative indirect effect. These research conclusions provide important references for the formulation of global marine carbon sink-related policies, helping countries optimize resource allocation, strengthen regional collaboration, and increase investment in science and technology. Consequently, they can promote the sustainable development of marine shellfish and algae aquaculture industries, and contribute to enhancing marine carbon sink capacity and achieving global carbon neutrality goals.

Details

1009240
Business indexing term
Location
Title
Research on Carbon Sink Effect of Marine Shellfish and Algae in China
Publication title
Fishes; Basel
Volume
10
Issue
6
First page
270
Number of pages
18
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
24103888
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-06-04
Milestone dates
2025-04-09 (Received); 2025-05-28 (Accepted)
Publication history
 
 
   First posting date
04 Jun 2025
ProQuest document ID
3223906126
Document URL
https://www.proquest.com/scholarly-journals/research-on-carbon-sink-effect-marine-shellfish/docview/3223906126/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-08-04
Database
ProQuest One Academic