Content area
Very large floating structures (VLFSs) typically employ a modular design approach to mitigate significant hydroelastic loads. A mooring system is commonly employed to maintain the position and heading of a VLFS against the forces of waves, wind, and currents, while a connector is utilized to restrict the relative motion among the modules. In this paper, we propose a comprehensive connector model based on elastic beam theory. The aim is to establish a unified mathematical model that accommodates various types of flexible connectors by adjusting the specific stiffness and damping parameters. To assess the effectiveness of the model, numerical and experimental studies are conducted on a VLFS composed of three rigid bodies connected in a series by multiple flexible connectors. The results obtained demonstrate that the general connector model is reasonable and can be applied to different types of connectors, thereby facilitating an analysis of the influence of the mechanical properties of the connectors on the motion response of the VLFS.
