Content area

Abstract

The system of extended ordered XOR-inclusion problems (in short, SEOXORIP) involving generalized Cayley and Yosida operators is introduced and studied in this paper. The solution is obtained in a real ordered Banach space using a fixed-point approach. First, we develop the fixed-point lemma for the solution of SEOXORIP. By using the fixed-point lemma, we develop a three-step iterative scheme for obtaining the approximate solution of SEOXORIP. Under the Lipschitz continuous assumptions of the cost mappings, the strong convergence of the scheme is demonstrated. Lastly, we provide a numerical example with a convergence graph generated using MATLAB 2018a to verify the convergence of the sequence generated by the proposed scheme.

Full text

Turn on search term navigation

1. Introduction

It is widely acknowledged that convex minimization problems, variational inequalities, equilibrium challenges, and feasibility dilemmas represent particular instances of variational inclusion problems. In the context of a single-valued mapping A:XX and a multivalued (potentially nonlinear) operator B:X2X, the objective is to determine xX such that

(1)0(A+B)x.

which is designated as a variational inclusion problem, exhibiting applications in signal processing [1], image processing [2], machine learning [3], and applications to multiple sets split feasibility problems [4].

The inability of projection methods to effectively address variational inclusion problems necessitated the emergence of resolvent operator methods, which have proven to be efficient in solving these problems. In their seminal works, Fang and Huang [5,6] put forth the concepts of H-monotone operators and H-accretive mappings, and by establishing the resolvent operators that correspond to these concepts, they investigated a specific category of variational inclusions within the context of Hilbert and Banach spaces. Following this, Xia and Huang [7] proposed the notion of general H-monotone operators as an extension of J-proximal mapping [8] and articulated a proximal mapping that is associated with general H-monotone operators, which diverges from the resolvent operator linked with the H-accretive mapping [6].

In 1972, a multitude of solutions pertaining to nonlinear equations were presented and analyzed by Amann [9]. In the recent past, fixed-point theory alongside its applications has undergone rigorous examination within the context of real ordered Banach spaces. Consequently, it is of paramount significance and a natural progression for generalized nonlinear ordered variational inequalities (ordered equations) to be meticulously investigated and deliberated. In 2008, Li [10] delineated the framework of generalized nonlinear ordered variational inequalities and proposed a computational algorithm aimed at approximating solutions for a specific class of generalized nonlinear ordered variational inequalities (ordered equations) within real ordered Banach spaces. Over the past two to three years, various forms of ordered variational inequalities and ordered inclusion problems have been extensively scrutinized, as evidenced in works such as [11,12,13] and the associated references therein.

On the contrary, Glowinski, in the year 1989 [14], and Noor, between the years 2000 and 2001 [15,16], formulated a three-step iterative algorithm aimed at addressing various categories of variational inequalities through the application of the Lagrangian multiplier and auxiliary principle methodologies. Consequently, it can be inferred that three-step iterative algorithms occupy a pivotal and consequential role in solutions to diverse challenges encountered in both pure and applied scientific disciplines. Glowinski et al. [14] and Noor [17] demonstrated that the three-step schemes yielded superior numerical outcomes in comparison to the two-step and one-step approximation iterations. In the year 2018, Iqbal et al. [18] introduced a three-step iterative framework for generalized mixed ordered quasi-variational inclusion that incorporates the XOR operator, while more recently, Ali et al. [19] examined the convergence and stability of the three-step iterative algorithm applied to the Extended Cayley–Yosida Inclusion Problem within the context of 2-Uniformly Smooth Banach Spaces.

Remark 1.

It is imperative to acknowledge that the selection of the governing sequences can significantly influence the efficacy of iterative algorithms.

Motivated by the preceding research while adhering to Remark 1, this manuscript presents a framework for extended ordered XOR-inclusion problems that incorporate generalized Cayley and Yosida operators. The solution is attained within a real Banach space utilizing a fixed-point methodology. Initially, we established the fixed-point lemma pertinent to the solutions of the proposed system. By applying the fixed-point lemma, we formulated a three-step iterative scheme aimed at deriving an approximate solution for SEOXORIP. Under the assumptions of Lipschitz continuity pertaining to the cost mappings, we elucidate the strong convergence of the iterative scheme. Finally, we furnish a numerical example accompanied by a convergence graph generated through MATLAB 2018a to substantiate the convergence of the sequence produced by the proposed scheme.

2. Prerequisites and Formulation of SEOXORIP

Throughout this manuscript, we consider X to be a real ordered Banach space equipped with the norm .X and the inner product ·,·X×X, the metric d generated by the norm .X, 2X (correspondingly, CB(X)) representing the nonempty collection of (closed and bounded) subsets of X, and the Hausdorff metric D(.,.) on CB(X), which is defined as follows:

D(A,B)=max{supsAd(s,B),suptBd(A,t)},A,BCB(X),

where d(s,B)=inftB{st} and d(A,t)=infsA{st}.

A cone is a ϕCX convex and closed subset of X that satisfies, for any xC and scalar λ>0, λxC. C is called pointed cone if C{C}=ϕ. For any x,yX, we define an ordering C such that xCyifandonlyifyxC. If either xCy or yCx, then x and y are called comparable elements, and this is denoted by xy. The real Banach space X equipped with ordering C is said to be an ordered Banach space.

Let lub{x,y} and glb{x,y} denote the least upper bound and greatest lower bound of the set {x,y}, respectively, for all x,yX. Suppose that lub{x,y} and glb{x,y} for the set {x,y} exist; then, we define binary operations:(i)

xy=lub{x,y},

(ii)

xy=glb{x,y},

(iii)

xy=(xy)(xy),

(iv)

xy=(xy)(xy).

The operations ,,⊕, and ⊙ are called OR, AND, XOR, and XNOR operations, respectively. For more details, refer to [20].

Proposition 1

([11,13]). Let ⊕ be an XOR operation and ⊙ be an XNOR operation. Then, the following holds:

(i)

x x = 0 , x y = y x = ( x y ) = ( y x ) ;

(ii)

If x0, then x0xx0;

(iii)

( λ x ) ( λ y ) = | λ | ( x y ) ;

(iv)

If xy, then xy=0 if and only if x=y;

(v)

If x,y, and w are comparable to each other, then (xy)(xw)+(wy);

(ix)

If x,y, and w are comparable to each other, then [(wx)(wy)]=(xy);

(vi)

xyxyλPxy;

(vii)

If xy, then xy=xy.

Definition 1

([11,13]). A single-valued mapping f:XX is called

(i)

A comparison mapping if, for every x,yX and xy, then f(x)f(y), xf(x) and yf(y);

(ii)

A strong comparison mapping if f is a comparison mapping and f(x)f(y) if and only if xy for any x,yX;

(iii)

A f-ordered compression mapping if f is a comparison mapping and

f ( x ) f ( y ) f ( x y ) , f o r f ( 0 , 1 ) a n d x , y X .

Definition 2.

Let f,g:XX be strong comparison single-valued mappings. Then, the mapping P:X×XX is called

(i)

A Pf-ordered compression mapping associated with f in the first component if there exists a constant Pf>0 such that

P ( f ( x ) , . ) P ( f ( y ) , . ) P f ( x y ) ,

(ii)

A Pg-ordered compression mapping associated with g in the second component if there exists a constant Pg>0 such that

P ( . , g ( x ) ) P ( . , g ( y ) ) P g ( x y ) .

Definition 3

([21]). Let (X,d) be a metric space and D be a Hausdorff metric on CB(X). Then, the multivalued map S:X×X2X is called a multivalued Lipschitz-type mapping with respect to N if there is a constant λND>0 such that

D(S(h,ux),S(h,uy))λNDxy,uxN(x)anduyN(y),x,yX,

where h:XX be single-valued mapping.

Definition 4

([22]). Let h:XX be single-valued mapping, N:XCB(X) and S:X×X2X be a multivalued mappings. Then, S(h(·),z) is said to be α-strongly accretive with respect to h if there is a constant α>0 such that

uv,xyαxy2,x,yX,uS(h(x),z),vS(h(y),z).

Proposition 2

([22]). Let h:XX be a single-valued mapping, N:XCB(X) be a multivalued mapping, and S:X×X2X be α-strongly accretive with respect to h. Then, the mapping [I+λS(h(·),z)]1 is single-valued for λ0 and zN(x).

Definition 5

([22]). Let h:XX be a single-valued mapping, N:XCB(X) be a multivalued mapping, and S:X×X2X be α-strongly accretive with respect to h. Then, S is said to be generalized α-maximal monotone with respect to h if

[I+λS(h,z)]X=X,forλ>0andzN(x).

Definition 6.

Let h:XX be a single-valued mapping and N:XCB(X) be a multivalued mapping. Let S:X×X2X be generalized α-strongly accretive with respect to h. Then, the generalized proximal-point mapping I,λS(h(·),z):XX associated with h and N is defined by

(2) I , λ S ( h ( · ) , z ) ( x ) = [ I + λ S ( h ( · ) , z ) ] 1 ( x ) , x X .

Proposition 3

([11,22]). Let h:XX be a single-valued mapping and N:XCB(X) be a multivalued mapping. Let S:X×X2X be generalized α-maximal monotone with respect to h. Then, the generalized proximal-point mapping I,λS(h(·),z) is L-Lipschitz continuous. That is,

I,λS(h(·),z)(x)I,λS(h(·),z)(y)Lxy,x,yX,

where L=1αλ+1.

Definition 7

([19]). The generalized Yosida approximation operator YI,λS(h(·),z) associated with the proximal-point mapping I,λS(h(·),z) is a single-valued mapping; that is, YI,λS(h(·),z):XX is defined by

(3)YI,λS(h(·),z)(x)=1λ[II,λS(h(·),z)](x),xX.

Definition 8

([19]). The generalized Cayley operator CI,λS(h(·),z) associated with the proximal-point mapping I,λS(h(·),z) is a single-valued mapping; that is, CI,λS(h(·),z):XX is defined by

(4)CI,λS(h(·),z)(x)=[2I,λS(h(·),z)I](x),xX.

Remark 2.

(i)

It is well known that the generalized Yosida approximation operator is Lipschitz-type continuous with constant ΘY=1λ1+L.

(ii)

Similarly, the generalized Cayley operator is Lipschitz-type continuous with constant ΘC=2L+1.

SEOXORIP and the Existence of Its Solution

We assume that, for kN, i=1,2,,k. Let fi,gi,hi:XX and Pi:X×XX be single-valued mappings. Suppose that Si:X×X2X is a generalized αi-strongly accretive multivalued mapping with respect to hi, and Ni:XCB(X) is a closed and bounded multivalued mapping. Then, our interest is in finding (x1,,xk)Xk and (v1,,vk)}}N1(x1)××}}Nk(xk) such that

(5)w1P1(CI,λ1S1(h1(x1),v2)(x1),YI,λ2S2(h2(x2),v3)(x2))+f1(x1)g2(x2)+S1(h1(x1),v2),w2P2(CI,λ2S2(h2(x2),v3)(x2),YI,λ3S3(h3(x3),v4)(x3))+f2(x2)g3(x3)+S2(h2(x2),v3),wkPk(CI,λkSk(hk(xk),v1)(xk),YI,λ1S1(h1(x1),v2)(x1))+fk(xk)g1(x1)+Sk(hk(xk),v1),

holds, for some w^=(w1,wk)Xk. This system is called an extended nonlinear system of ordered XOR-inclusion problems involving generalized Cayley–Yosida operators (in short, SEOXORIP).

Moreover, to highlight the level of generalization of our problem, we present several special cases below.

Special Cases:

If we define CI,λiSi(hi(xi),vi+1)(xi)=fi(xi),YI,λiSi(hi(xi),vi+1)(xi)=xi,xi and fi=gi+1i, then SEOXORIP (5) becomes a system for finding (x1,x2,,xk)Xk such that

(6)w1P1(f1(x1),x2)+S1(h1(x1),v2),w2P2(f2(x2),x3)+S2(h2(x2),v3),wkPk(fk(xk),x1)+Sk(hk(xk),v1),

for some (w1,w2,,wk)Xk. System (6) was introduced and studied by [23].

Let i=1,2. If we define vi={gi(xi)} and CI,λ1Si(hi(xi),vi+1)(xi)=YI,λiSi(hi(xi),vi+1)(xi)=xi,xi, then for ωi=0,i,  system (5) reduces to the following System of Generalized Variational Inclusions (SGVI), that is, a problem where (x,y)X1×X2 must be found, such that

(7)θ1P1(x,y)+S1(h1(x),g2(y)),θ2P2(x,y)+S2(h2(x),g1(y)),

hold, where θ1=0 and θ2=0 are the zeros of X1 and X2, respectively. System (7) was studied by Kazmi et al. [22].

By using the proximal-point mapping, we can characterize the solution of system (5) in terms of fixed-point equations.

Lemma 1.

SEOXORIP (5) has the solution (x,v), i.e., x=(x1,,xk)Xk and v=(v1,,vk)N1(x1)××Nk(xk), if and only if the following equations hold:

(8) x 1 = I , λ 1 S 1 ( h 1 ( · ) , v 2 ) x 1 λ 1 { P 1 ( C I , λ 1 S 1 ( h 1 ( · ) , v 2 ) ( x 1 ) , Y I , λ 2 S 2 ( h 2 ( · ) , v 3 ) ( x 2 ) ) + f 1 ( x 1 ) g 2 ( x 2 ) w 1 } , x 2 = I , λ 2 S 2 ( h 2 ( · ) , v 3 ) x 2 λ 2 { P 2 ( C I , λ 2 S 2 ( h 2 ( · ) , v 3 ) ( x 2 ) , Y I , λ 3 S 3 ( h 3 ( · ) , v 4 ) ( x 3 ) ) + f 2 ( x 2 ) g 3 ( x 3 ) w 2 } , x k = I , λ k S k ( h k ( · ) , v 1 ) x k λ k { P k ( C I , λ k S k ( h k ( · ) , v 1 ) ( x k ) , Y I , λ 1 S 1 ( h 1 ( · ) , v 2 ) ( x 1 ) ) + f k ( x k ) g 1 ( x 1 ) w k } ,

where λis>0 are non-negative real numbers.

Proof. 

The proof follows directly from Definition 6 of proximal-point mapping.

Now, we have the following theorem for the existence of the solution to system (5). □

Theorem 1.

Let i=1,2,,k, kN,and we setk+1=1. Let fi,gi,hi:XX be fi, gi, and hi strongly ordered comparison mappings. Assume that Pi:X×XX is a PiCi-ordered compression mapping associated with CI,λiSi(hi(·),z) in the first component and PiYi-ordered compression mapping associated with YI,λiSi(hi(·),z) in the second component. Let Si:X×X2X be generalized αi-strongly accretive with respect to hi and Ni:XCB(X) be a closed and bounded multivalued mapping. Suppose I,λiSi(hi(·),z), YI,λiSi(hi(·),z), and CI,λiSi(hi(·),z) are Lipschitz continuous with constants Li, ΘYi, and ΘCi, respectively.

Additionally,   let   xixi+1, yiyi+1 fi(xi)fi(yi), gi(xi)gi(yi), and I,λiSi(hi(·),z)(xi)I,λiSi(hi(·),z)(yi), and for all constants λ1,λ2,,λk>0, the following relations hold:

(9) λ 1 ( P 1 C 1 Θ C 1 + f 1 ) + λ k ( P k Y 1 Θ Y 1 + g 1 ) < 1 L 1 1 , λ 2 ( P 2 C 2 Θ C 2 + f 2 ) + λ 1 ( P 1 Y 2 Θ Y 2 + g 2 ) < 1 L 2 1 , λ k ( P k C k Θ C k + f k ) + λ k 1 ( P k 1 Y k Θ Y k + g k ) < 1 L k 1 ,

where

L i = 1 α i λ i + 1 , Θ Y i = 1 λ i ( L i 1 ) a n d Θ C i = 2 L i 1 .

Then, SEOXORIP (5) admits a solution (xi,vi).

Proof. 

We define the mapping Q:XkXk by

Q(x1,,xk):=(Q1(x1,x2),,Qκ(xk,x1)),(x1,,xk)Xk,

where the mappings Qi:X×XX are defined as

Q1(x1,x2)=I,λ1S1(h1(·),v2)x1λ1{P1(CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2))+f1(x1)g2(x2)w1},Q2(x2,x3)=I,λ2S2(h2(·),v3)x2λ2{P2(CI,λ2S2(h2(·),v3)(x2),YI,λ3S3(h3(·),v4)(x3))+f2(x2)g3(x3)w2},Qk(xκ,x1)=I,λkSk(hk(·),v1)xkλk{Pk(CI,λkSk(hk(·),v1)(xk),YI,λ1S1(h1(·),v2)(x1))+fk(xk)g1(x1)wk}.

Let xi,yiX,viNi(xi) such that xixj,yiyj,vivj, and by applying Proposition 3, we have

(10)Q1(x1,x2)Q1(y1,y2)=I,λ1S1(h1(·),v2)x1λ1{P1(CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2))+f1(x1)g2(x2)w1}I,λ1S1(h1(·),v2)y1λ1{P1(CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(y2))+f1(y1)g2(y2)w1}L1{x1y1+λ1P1CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2)P1(CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(y2))+λ1f1(x1)g2(x2)f1(y1)g2(y2)}.

By applying Proposition 1 and the ordered compressionness of f1 and g2, we have

(11)f1(x1)g2(x2)f1(y1)g2(y2)=f1(x1)f1(y1)g2(x2)g2(y2)f1(x1)f1(y1)+g2(x2)g2(y2)f1x1y1+g2x2y2.

Since P1 is a P1C1-ordered compression mapping in the first component with respect to CI,λ1S1(h1(·),v2) and a P1Y1-ordered compression mapping in the second component with respect to YI,λ2S2(h2(·),v3), we have

(12)P1CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2)P1CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(y2)P1CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2)P1CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(x2)+P1CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(x2)P1CI,λ1S1(h1(·),v2)(y1),YI,λ2S2(h2(·),v3)(y2)P1C1CI,λ1S1(h1(·),v2)(x1)CI,λ1S1(h1(·),v2)(y1)+P1Y1YI,λ2S2(h2(·),v3)(x2)YI,λ2S2(h2(·),v3)(y2)P1C1ΘC1x1y1+P1Y1ΘY1x2y2P1C1ΘC1x1y1+P1Y1ΘY1x2y2.

Inserting (11) and (12) into (10) and applying Proposition 1, we get

(13)Q1(x1,x2)Q1(y1,y2)=Q1(x1,x2)Q1(y1,y2)L1{x1y1+λ1(P1C1ΘC1x1y1+P1Y1ΘY1x2y2+f1x1y1+g2x2y2)}=L1[1+λ1(P1C1ΘC1+f1)]x1y1+λ1(P1Y1ΘY1+g2)x2y2.

Continuing in similar fashion, let xi,yiX,viNi(xi) such that xixj,yiyj, and  vivj; applying Proposition 3, we have

(14)Qk(xk,x1)Qk(yk,y1)=I,λkSk(hk(·),v1)xkλk{Pk(CI,λkSk(hk(·),v1)(xk),YI,λ1S1(h1(·),v2)(x1))+fk(xk)g1(x1)wk}I,λkSk(hk(·),v1)ykλk{Pk(CI,λkSk(hk(·),v1)(yk),YI,λ1S1(h1(·),v2)(y1))+fk(yk)g1(y1)wk}Lk{xkyk+λkPkCI,λkSk(hk(·),v1)(xk),YI,λ1S1(h1(·),v2)(x1)Pk(CI,λkSk(hk(·),v1)(yk),YI,λ1S1(h1(·),v2)(y1))+λkfk(xk)g1(x1)fk(yk)g1(y1)}.

By applying Proposition 1 and the ordered compressionness of fk and g1, we have

(15)fk(xk)g1(x1)fk(yk)g1(y1)=fk(xk)fk(yk)g1(x1)g1(y1)fk(xk)fk(yk)+g1(x1)g1(y1)fkxkyk+g1x1y1.

Since Pk is a PkCk-ordered compression mapping associated with CI,λkSk(hk(·),v1) in the first component and a PkY1-ordered compression mapping associated with YI,λ1S1(h1(·),v2) in the second component, we have

(16)PkCI,λkSk(hk(·),v1)(xk),YI,λ1S1(h1(·),v2)(x1)PkCI,λkSk(hk(·),v1)(yk),YI,λ1S1(h1(·),v2)(y1)PkCI,λkSk(hk(·),v1)(xk),YI,λkS1(h1(·),v2)(x1)PkCI,λkSk(hk(·),v1)(yk),YI,λ1S1(h2(·),v2)(x1)+PkCI,λkSk(hk(·),v1)(yk),YI,λ1S1(h1(·),v2)(x1)PkCI,λ1Sk(hk(·),v1)(y1),YI,λ1S1(h1(·),v2)(y1)PkCkCI,λkSk(hk(·),v1)(xk)CI,λkSk(hk(·),v1)(yk)+PkYkYI,λ1S1(h1(·),v2)(x1)YI,λ1S1(h1(·),v2)(y1)PkCkΘCkxkyk+PkYkΘYkx1y1PkCkΘCkxkyk+PkYkΘYkx1y1.

Inserting (15) and (16) into (14) and applying Proposition 1, we get

(17)Qk(xk,x1)Qk(yk,y1)=Qk(xk,x1)Qk(yk,y1)Lk{xkyk+λk(PkCkΘCkxkyk+PkYkΘY1x1y1+fkxkyk+g1x1y1)}=Lk[1+λk(PkCkΘCk+fk)]xkyk+λk(PkY1ΘY1+g1)x1y1.

Based on (13) and (17), we have

Q1(x1,x2)Q1(y1,y2)++Qk(xk,x1)Qk(yk,y1)L1[1+λ1(P1C1ΘC1+f1)+λk(PkY1ΘY1+g1)]x1y1+L2[1+λ2(P2C2ΘC2+f2)+λ1(P1Y2ΘY2+g2)]x2y2+++Lk[1+λk(PkCkΘCk+fk)+λk(Pk1YkΘYk+gk)]xkyk,

that is,

(18)i=1kQi(xi,xi+1)Qi(yi,yi+1)i=1kΞik+i1Lixiyi,

where

Ξ1k=L1[1+λ1(P1C1ΘC1+f1)+λk(PkY1ΘY1+g1)],Ξ21=L2[1+λ2(P2C2ΘC2+f2)+λ1(P1Y2ΘY2+g2)],Ξkk1=Lk[1+λk(PkCkΘCk+fk)+λk(Pk1YkΘYk+gk)].

The norm (x1,,xk)1onXk  is defined as

(19)(x1,,xκ)1=x1++xκ,(x1,,xk)Xk.

Clearly, the structure (Xk,.1) forms a Banach space with respect to the norm (19). Thus, the definition of the mapping Q, (18) and (19), implies that

(20)Q(x1,,xκ)Q(y1,,yκ)1=Q1(x1,x2)Q1(y1,y2)++Qk(xk,x1)Qk(yk,y1)maxΞ1k,Ξ21,,Ξkk1(x1y1+x2y2+xkyk).

From (9), we conclude that maxΞ1k,Ξ21,,Ξkk1<1. Therefore, there exists a unique fixed point (x1,,xk)Xk of the mapping Q. That is,

Q(x1,,xk)=(x1,,xk).

This leads to

(21)x1=I,λ1S1(h1(·),v2)x1λ1{P1(CI,λ1S1(h1(·),v2)(x1),YI,λ2S2(h2(·),v3)(x2))+f1(x1)g2(x2)w1},x2=I,λ2S2(h2(·),v3)x2λ2{P2(CI,λ2S2(h2(·),v3)(x2),YI,λ3S3(h3(·),v4)(x3))+f2(x2)g3(x3)w2},xk=I,λkSk(hk(·),v1)xkλk{Pk(CI,λkSk(hk(·),v1)(xk),YI,λ1S1(h1(·),v2)(x1))+fk(xk)g1(x1)wk}.

Hence, Lemma (1) ensures that (x,v) is a solution of system (5).    □

3. Three-Step Iterative Scheme and Its Convergence

In this section, leveraging Lemma 1, we formulate a three-step iterative algorithm aimed at determining the approximate solution for the newly established system of ordered XOR-inclusion problems involving Cayley and Yosida operators (Algorithm 1). The convergence properties of the sequence produced by the algorithm are demonstrated under certain appropriate assumptions.

Algorithm 1: Three-Step Iterative Algorithm for the Approximate Solution of SEOXORIP
Let i=1,2,,k, kNand setk+1=1; let fi,gi,hi:XX and Pi:X×XX be single-valued mappings. Let Ni:XCB(X) be a D-Lipschitz continuous mapping with constants λND and let Si:X×X2X be a generalized αi-strongly accretive mapping with respect to hi. Then, Initially: Choose (x10,,xk0)Xk and (v10,,vk0)N1(x10)××Nk(xk0). Step I: Let xi(n+1)xi(n) and vi(n)vj(n). We define

(22)x1(n+1)=α1nI,λ1S1(h1(·),v2)[y1nλ1{P1(CI,λ1S1(h1(·),v2)(y1n),YI,λ2S2(h2(·),v3)(y2n))+f1(y1n)g2(y2n)w1}]+(1α1n)x1n+α1nδ1ny1(n)=β1nI,λ1S1(h1(·),v2)[z1nλ1{P1(CI,λ1S1(h1(·),v2)(z1n),YI,λ2S2(h2(·),v3)(z2n))+f1(z1n)g2(z2n)w1}]+(1β1n)x1(n)+β1nδ2nz1(n)=γ1nI,λ1S1(h1(·),v2)[x1nλ1{P1(CI,λ1S1(h1(·),v2)(x1n),YI,λ2S2(h2(·),v3)(x2n))+f1(x1n)g2(x2n)w1}]+(1γ1n)x1(n)+γ1nδ3nxk(n+1)=αknI,λ1Sk(hk(·),v1)[yknλk{P1(CI,λkSk(hk(·),v1)(ykn),YI,λ1S1(h1(·),v2)(y1n))+fk(ykn)g1(y1n)wk}]+(1αkn)xkn+αknδknyk(n)=βknI,λkSk(hk(·),v1)[zknλk{Pk(CI,λkSk(hk(·),v1)(zkn),YI,λ1S1(h1(·),v2)(z1n))+fk(zkn)g1(z1n)wk}]+(1βkn)xk(n)+βknδk+1nzk(n)=γknI,λkSk(hk(·),v1)[xknλk{Pk(CI,λkSk(hk(·),v1)(xkn),YI,λ1S1(h1(·),v2)(x1n))+fk(xkn)g1(x1n)wk}]+(1γkn)xk(n)+γknδk+2n.

for n=0,1,2,, where λi>0 is a constant and αin,βin, and γin are real sequences in (0,1) such that

n=1αin=,i.

Step II:  Choose vi(n+1)Ni(xi(n+1)) such that

(23)vi(n+1)vi(n)1+1n+1D(Ni(xi(n+1)),Ni(xi(n))),

where D(.,.) is the Hausdorff metric on X. Step III:  If the accuracy is satisfactory and xi(n+1) and vi(n)i satisfy step I, then stop; if not, set n=n+1 and return to step I.

Remark 3.

Algorithm 1 becomes a two-step iterative algorithm (Ishikawa-type) if γin=0 for all n0, and it reduces to a one-step iterative scheme (Mann-type) when choosing βin=γin=0 for all n0. We also observe that if we define the appropriate operators for Algorithm 1, we can easily acquire many more methods that have been studied by several authors for addressing ordered variational inclusions, see, e.g., [24,25,26].

Lemma 2.

The sequence vn0 as n if vn and ηn are sequences in [0,) such that

(i)

0ηn<1,n=0,1,2, and limsupnηn<1;

(ii)

vn+1ηnvn,n=0,1,2,3,, hold.

Theorem 2.

Let all the mappings and conditions be the same as in Theorem 1, except for condition (9). Additionally, if

(24) I , λ i S i ( h ( · ) , u ) ( x ) I , λ i S i ( h ( · ) , v ) ( x ) Λ i u v ,

(25) sup n 1 { α i n β i n ν i 2 { γ i n ν i + 1 } + α i n ν i + 1 } < sup n 1 { α i n β i n ν i 2 γ i n ν i + α i n ν i β i n + α i n } , sup n 1 { α i n β i n ν i ( ν i γ i n + 1 ) ( δ i + 1 + μ i + 1 ) + α i n β i n ν i δ i + 1 γ i + 1 n ν i + 1 + α i n ν i + 1 β i + 1 n δ i + 1 ν i + 1 γ i + 1 n + α i n δ i + 1 } , < sup n 1 { α i n β i n ν i δ i + 1 γ i + 1 n + α i n ν i + 1 β i + 1 n δ i + 1 γ i + 1 n + 1 + α i n δ i + 1 β i + 1 n } , sup n 1 { α i n γ i + 1 n δ i + 1 ( β i n ν i + β i + 1 n ν i + 1 ) ( δ i + 2 + μ i + 2 ) + α i n β i + 2 n τ i + 2 ν i + 2 ( γ i + 2 n ν i + 2 + 1 ) + α i n β i n ν i τ i + 2 ( ν i γ i n + γ i + 2 n ν i + 2 ) + α i n β i + 1 n δ i + 1 [ γ i + 1 n δ i + 2 ν i + 2 + δ i + 2 + μ i + 2 ] } < sup n 1 α i n β i + 2 n τ i + 2 ν i + 2 γ i + 2 n + α i n β i n ν i τ i + 2 γ i + 2 n + 1 + α i n β i + 1 n δ i + 1 γ i + 1 n δ i + 2 + β i + 1 n , sup n 1 { α i n β i n ν i [ γ i + 1 n δ i + 1 δ i + 3 + γ i + 2 n τ i + 2 ( δ i + 3 + μ i + 3 ) ] + α i n β i + 1 n δ i + 1 [ γ i + 1 n ν i + 1 δ i + 3 + γ i + 2 n δ i + 2 δ i + 3 + γ i + 2 n δ i + 2 μ i + 3 + τ i + 3 + γ i + 3 n τ i + 3 ν i + 3 ] + α i n β i + 2 n τ i + 2 [ γ i + 2 n ν i + 2 ( δ i + 3 + μ i + 3 ) + γ i + 3 n δ i + 3 ν i + 3 + δ i + 3 + τ i + 3 ] } < sup n 1 { 1 + γ i + 3 n τ i + 3 + α i n β i + 2 n τ i + 2 γ i + 3 n δ i + 3 } , sup n 1 { α i n β i n ν i τ i + 2 τ i + 4 γ i + 2 n + α i n β i + 1 n δ i + 1 [ δ i + 2 γ i + 2 n τ i + 4 + γ i + 3 n τ i + 3 ( δ i + 4 + μ i + 4 ) ] + α i n β i + 2 n [ τ i + 2 τ i + 4 ( γ i + 2 n ν i + 2 + γ i + 4 n ν i + 4 + 1 ) + γ i + 3 n δ i + 3 ( τ i + 3 δ i + 4 + τ i + 2 μ i + 4 ) ] } < sup n 1 { 1 + α i n β i + 2 n τ i + 2 τ i + 4 γ i + 4 n } , sup n 1 { α i n β i + 1 n γ i + 3 n δ i + 1 τ i + 3 τ i + 5 + α i n β i + 2 n τ i + 2 [ γ i + 3 n δ i + 3 τ i + 5 + γ i + 4 n τ i + 4 ( δ i + 5 + μ i + 5 ) ] } < 1 , sup n 1 { α i n β i + 2 n γ i + 4 n τ i + 2 τ i + 4 τ i + 6 } < 1 ,

and

lim n δ i n ( δ i n ) = 0 , , i = 1 , 2 , , k .

hold, then the sequences {(xi(n),vi(n))} generated by Algorithm 1 converge strongly to the solution (xi,vi) of system (5).

Proof of Convergence.

Theorem 1 guarantees that System (5) admits the solution (xi,vi). Let us assume that x*=(x1*,x2*,,xk*) is a unique solution of SEOXORIP (5). Then, we have

(26)xi*=[αinI,λiSi(hi(·),vi+1)(xi*λi{PiCI,λiSi(hi(·),vi+1)(xi*),YI,λi+1Si+1(hi+1(·),vi+2)(xi+1*)+fi(xi)*gi+1(xi+1*)wi})+(1αin)xi*]=[βinI,λiSi(hi(·),vi+1)[xi*λi{PiCI,λiSi(hi(·),vi+1)(xi*),YI,λi+1Si+1(hi+1(·),vi+2)(xi+1*)+fi(xi*)gi+1(xi+1*)wi}]+(1βin)xi*]=[γinI,λiSi(hi(·),vi+1)[xi*λi{PiCI,λiSi(hi(·),vi+1)(xi*),YI,λi+1Si+1(hi+1(·),vi+2)(xi+1*)+fi(xi*)gi+1(xi+1*)wi}]+(1γin)xi*].

From (22), (26), and Proposition 3, we obtain

x1(n+1)x1*=[α1nI,λ1S1(h1(·),v2n)(y1nλ1{P1(CI,λ1S1(h1(·),v2n)(y1n),YI,λ2S2(h2(·),v3n)(y2n))+f1(y1n)g2(y2n)w1})+(1α1n)x1n+α1nδ1n][α1nI,λ1S1(h1(·),v2)(x1*λ1{P1(CI,λ1S1(h1(·),v2)(x1*),YI,λ2S2(h2(·),v3)(x2*))+f1(x1*)g2(x2*)w1})+(1α1n)x1*]α1nI,λ1S1(h1(·),v2n)(y1nλ1{P1(CI,λ1S1(h1(·),v2n)(y1n),YI,λ2S2(h2(·),v3n)(y2n))+f1(y1n)g2(y2n)w1})I,λ1S1(h1(·),v2)(x1*λ1{P1(CI,λ1S1(h1(·),v2)(x1*),YI,λ2S2(h2(·),v3)(x2*))+f1(x1*)g2(x2*)w1})+(1α1n)x1nx1*+α1nδ1n.

In similar way to (10), using (24), we have

(27)x1(n+1)x1*α1n[Λ2v2nv2+L1{y1nx1*+λ1P1(CI,λ1S1(h1(·),v2n)(y1n),YI,λ2S2(h2(·),v3)(y2n))P1(CI,λ1S1(h1(·),v2n)(x1*),YI,λ2S2(h2(·),v3)(x2*))+λ1f1(y1n)g2(y2n)f1(x1*)g2(x2*)}]+(1α1n)x1nx1*+α1nδ1n0.

From Definitions 7 and 8 and (12), we have

(28)P1CI,λ1S1(h1(·),v2n)(y1n),YI,λ2S2(h2(·),v3)(y2n)P1CI,λ1S1(h1(·),v2)(x1*),YI,λ2S2(h2(·),v3)(x2*)P1C1CI,λ1S1(h1(·),v2n)(y1n)CI,λ1S1(h1(·),v2)(x1*)+P1Y1YI,λ2S2(h2(·),v3n)(y2n)YI,λ2S2(h2(·),v3)(x2*)3P1C1y1nx1*+P1C1Λ21+11+nλDN2y2nx2*+P1Y1λ2(2y2nx2*+Λ31+11+nλDN3y3nx3*).

Since v2nN2(x2n), according to Nadler [27], ∃v2N2(x2*) such that

(29)v2nv21+1n+1D(N2(x2n),N2(x2*)).

Using the D-Lipschitz continuity of N2, we obtain

(30)v2nv21+1n+1λDN2x2nx2*.

Using (28), (30), and Proposition 3 in (27), we get

(31)x1(n+1)x1*α1n[Λ21+1n+1λDN2x2nx2*+L1{y1nx1*+λ1(3P1C1y1nx1*+P1C1Λ21+11+nλDN2y2nx2*+P1Y1λ2(2y2nx2*+Λ31+11+nλDN3y3nx3*)+λ1f1y1nx1*+g2y2nx2*}]+(1α1n)x1nx1*+α1nδ1n0.

By (vii) of Proposition 1, we have

(32)x1(n+1)x1*=x1(n+1)x1*=α1nL11+λ1f1y1nx1*+(1α1n)x1nx1*+α1nΛ21+11+nλDN2L1P1C1+2P1Y1λ2+λ1g2y2nx2*+α1nΛ21+11+nλDN2x2nx2*+α1nL1P1Y1λ2Λ31+11+nλDN3y3nx3*+α1nδ1n0.

Let

ν1=L11+λ1f1,δ2=Λ21+11+nλDN2L1P1C1+2P1Y1λ2+λ1g2,

μ2=Λ21+11+nλDN2andτ3=L1P1Y1λ2Λ31+11+nλDN3.

(33)x1(n+1)x1*=α1nν1y1nx1*+α1nδ2y2nx2*+α1nμ2x2nx2*+(1α1n)x1nx1*+α1nτ3y3nx3*+α1nδ1n0.

Similarly, we calculate

y1(n)x1*(β1nI,λ1S1(h1(·),v2)[z1nλ1{P1(CI,λ1S1(h1(·),v2)(z1n),YI,λ2S2(h2(·),v3)(z2n))+f1(z1n)g2(z2n)w1}]+(1β1n)x1(n)+β1nδ2n)(β1nI,λ1S1(h1(·),v2)[x1*λ1{P1(CI,λ1S1(h1(·),v2)(x1*),YI,λ2S2(h2(·),v3)(x2*))+f1(x1*)g2(x2*)w1}]+(1β1n)x1*).

(34)y1(n)x1*β1n[Λ2v2nv2+L1{z1nx1*+λ1P1(CI,λ1S1(h1(·),v2n)(z1n),YI,λ2S2(h2(·),v3)(z2n))P1(CI,λ1S1(h1(·),v2n)(x1*),YI,λ2S2(h2(·),v3)(x2*))+λ1f1(z1n)g2(z2n)f1(x1*)g2(x2*)}]+(1β1n)x1nx1*+β1nδ2n0β1n[Λ21+1n+1λDN2x2nx2*+L1{z1nx1*+λ1(3P1C1z1nx1*+P1C1Λ21+11+nλDN2z2nx2*+P1Y1λ2(2z2nx2*+Λ31+11+nλDN3z3nx3*)+λ1f1z1nx1*+g2y2nx2*}]]+(1β1n)x1nx1*+β1nδ2n0=β1nL11+λ1f1z1nx1*+(1β1n)x1nx1*+β1nΛ21+11+nλDN2L1P1C1+2P1Y1λ2+λ1g2z2nx2*+β1nΛ21+11+nλDN2x2nx2*+β1nL1P1Y1λ2Λ31+11+nλDN3z3nx3*+β1nδ2n0=β1nν1z1nx1*+β1nδ2z2nx2*+β1nμ2x2nx2*+(1β1n)x1nx1*+β1nτ3z3nx3*+β1nδ2n0.

In a similar way, by using the definition of z1n in Algorithm 1, we obtain

z1(n)x1*(γ1nI,λ1S1(h1(·),v2)[x1nλ1{P1(CI,λ1S1(h1(·),v2)(x1n),YI,λ2S2(h2(·),v3)(x2n))+f1(x1n)g2(x2n)w1}]+(1γ1n)x1(n)+γ1nδ2n)(γ1nI,λ1S1(h1(·),v2)[x1*λ1{P1(CI,λ1S1(h1(·),v2)(x1*),YI,λ2S2(h2(·),v3)(x2*))+f1(x1*)g2(x2*)w1}]+(1γ1n)x1*)γ1n[Λ2v2nv2+L1{x1nx1+λ1P1(CI,λ1S1(h1(·),v2n)(x1n),YI,λ2S2(h2(·),v3)(x2n))P1(CI,λ1S1(h1(·),v2n)(x1*),YI,λ2S2(h2(·),v3)(x2*))+λ1f1(x1n)g2(x2n)f1(x1*)g2(x2*)}]+(1γ1n)x1nx1*+γ1nδ3n0γ1n[Λ21+1n+1λDN2x2nx2+L1{x1nx1*+λ1(3P1C1x1nx1*+P1C1Λ21+11+nλDN2x2nx2*+P1Y1λ2(2x2nx2*+Λ31+11+nλDN3x3nx3*)+λ1f1x1nx1*+g2x2nx2*}]]+(1γ1n)x1nx1*+γ1nδ3n0.

(35)z1(n)x1*=γ1nL11+λ1f1x1nx1*+(1γ1n)x1nx1*+γ1nΛ21+11+nλDN2L1P1C1+2P1Y1λ2+λ1g2x2nx2*+γ1nΛ21+11+nλDN2x2nx2*+γ1nL1P1Y1λ2Λ31+11+nλDN3x3nx3*+γ1nδ3n0=γ1nν1+(1γ1n)x1nx1*+γ1nδ2+γ1nμ2x2nx2*+γ1nτ3x3nx3*+γ1nδ3n0.

Using (34) and (35) in (33), we have

(36)x1n+1x1*α1nν1{β1nν1z1nx1*+β1nδ2z2nx2*+β1nμ2x2nx2*+(1β1n)x1nx1*+β1nτ3z3nx3*+β1nδ2n0}+α1nδ2{β2nν2z2nx2*+β2nδ3z3nx3*+β2nμ3x3nx3*+(1β2n)x2nx2*+β2nτ4z4nx4*+β2nδ3n0}+α1nμ2x2nx2*+(1α1n)x1nx1*+α1nδ1n0+α1nτ3{β3nν3z3nx3*+β3nδ4z4nx4*+β3nμ4x4nx4*+(1β3n)x3nx3*+β3nτ5z5nx5*+β3nδ4n0}α1nβ1nν12z1nx1*+α1nβ1nν1δ2+α1nν2β2nδ2z2nx2*+α1nβ1nν1τ3+α1nβ2nδ2δ3+α1nβ3nτ3ν3z3nz3*+α1nβ2nδ2τ4+α1nβ3nτ3δ4z4nx4*+α1nβ3nτ3τ5z5x5*+(1α1n)+α1nν1(1β1n)x1nx1*+α1nβ1nν1μ2+α1n(1β2n)δ2+α1nμ2x2*x2+(1β3n)+α1nβ2nδ2μ3x3x3*+α1nβ3nτ3τ4x4nx4*+α1nν1β1nδ2n0+α1nδ2β2nδ3n0+α1nτ3β3nδ4n0+α1nδ1n0α1nβ1nν12{γ1nν1+(1γ1n)x1nx1*+γ1nδ2+γ1nμ2x2nx2*+γ1nτ3x3nx3*+γ1nδ3n0}+α1nβ1nν1δ2+α1nν2β2nδ2{γ2nν2+(1γ2n)x2nx2*+γ2nδ3+γ2nμ3x3nx3*+γ2nτ4x4nx4*+γ2nδ4n0}+(α1nβ1nν1τ3+α1nβ2nδ2δ3+α1nβ3nτ3ν3){γ3nν3+(1γ3n)x3nx3*+γ3nδ4+γ3nμ4x4nx4*+γ3nτ5x5nx5*+γ3nδ4n0}+α1nβ2nδ2τ4+α1nβ3nτ3δ4{γ4nν4+(1γ4n)x4nx4*+γ4nδ5+γ4nμ5x5nx5*+γ4nτ6x6nx6*+γ4nδ5n0}+α1nβ3nτ3τ5{(γ5nν5+(1γ5n))x5nx5*+γ5nδ6+γ5nμ6x6nx6*+γ5nτ7x7nx7*+γ5nδ7n0}+(1α1n)+α1nν1(1β1n)x1nx1*+α1nβ1nν1μ2+α1n(1β2n)δ2+α1nμ2x2nx2*+(1β3n)+α1nβ2nδ2μ3x3nx3*+α1nβ3nτ3τ4x4nx4+α1nν1β1nδ2n0+α1nδ2β2nδ3n0+α1nτ3β3nδ4n0+α1nδ1n0.

After simplification and by Proposition 1, we obtain

(37)x1n+1x1*[α1nβ1nν12{γ1n(ν11)+1}+α1n{ν1(1β1n)1}+1]x1nx1*+[α1nβ1nν1(ν1γ1n+1)(δ2+μ2)+α1nβ1nν1δ2γ2n(ν21)+α1nν2β2nδ2(ν2γ2nγ2n+1)+α1nδ2(1β2n)]x2nx2*+[α1nγ2nδ2(β1nν1+β2nν2)(δ3+μ3)+α1nβ3nτ3ν3(γ3nν3+1γ3n)+α1nβ1nν1τ3(ν1γ1n+γ3nν3γ3n+1)+α1nβ2nδ2[γ3nδ3(ν31)+δ3+μ3]β3n+1]x3nx3*+[α1nβ1nν1[γ2nδ2δ4+γ3nτ3(δ4+μ4)]+α1nβ2nδ2[γ2nν2δ4+γ3nδ3δ4+γ3nδ3μ4+τ4+γ4nτ4(ν41)]+α1nβ3nτ3[γ3nν3(δ4+μ4)+γ4nδ4(ν41)+δ4+τ4]]x4nx4*+[α1nβ1nν1τ3τ5γ3n+α1nβ2nδ2[δ3γ3nτ5+γ4nτ4(δ5+μ5)]+α1nβ3n[τ3τ5(γ3nν3+γ5nν5γ5n+1)+γ4nδ4(τ4δ5+τ3μ5)]]x5nx5*+[α1nβ2nγ4nδ2τ4τ6+α1nβ3nτ3[γ4nδ4τ6+γ5nτ5(δ6+μ6)]]x6nx6*+α1nβ3nγ5nτ3τ5τ7x7nx7*+α1nβ1nν12γ1nδ3n0+α1nβ1nν1δ2+α1nν2β2nδ2γ2nδ4n0+α1nβ1nν1τ3+α1nβ2nδ2δ3+α1nβ3nτ3ν3γ3nδ4n0+α1nβ2nδ2τ4+α1nβ3nτ3δ4γ4nδ5n0+α1nβ3nτ3τ5γ5nδ7n0+α1nν1β1nδ2n0+α1nδ2β2nδ3n0+α1nτ3β3nδ4n0+α1nδ1n0.

By applying the same logic as above, we have

(38)x2n+1x2*[α2nβ2nν22{γ2n(ν21)+1}+α2n{ν2(1β2n)1}+1]x2nx2*+[α2nβ2nν2(ν2γ2n+1)(δ3+μ3)+α2nβ2nν2δ3γ3n(ν31)+α2nν3β3nδ3(ν3γ3nγ3n+1)+α2nδ3(1β3n)]x3nx3*+[α2nγ3nδ3(β2nν2+β3nν3)(δ4+μ4)+α2nβ4nτ4ν4(γ4nν4+1γ4n)+α2nβ2nν2τ4(ν2γ2n+γ4nν4γ4n+1)+α2nβ3nδ3[γ4nδ4(ν41)+δ4+μ4]β4n+1]x4nx4*+[α2nβ2nν2[γ3nδ3δ5+γ4nτ4(δ5+μ5)]+α2nβ3nδ3[γ3nν3δ5+γ4nδ4δ5+γ4nδ4μ5+τ5+γ5nτ5(ν51)]+α2nβ4nτ4[γ4nν4(δ5+μ5)+γ5nδ5(ν51)+δ5+τ5]]x5nx5*+[α2nβ2nν2τ4τ6γ4n+α2nβ3nδ3[δ4γ4nτ6+γ5nτ5(δ6+μ6)]+α2nβ4n[τ4τ6(γ4nν4+γ6nν6γ6n+1)+γ5nδ5(τ5δ6+τ4μ6)]]x6nx6*+α2nβ3nγ5nδ3τ5τ7+α2nβ4nτ4[γ5nδ5τ7+γ6nτ6(δ7+μ7)]x7nx7*+α2nβ4nγ6nτ4τ6τ8x8nx8*+α2nβ2nν22γ2nδ4n0+α2nβ2nν2δ3+α2nν3β3nδ3γ3nδ5n0+α2nβ2nν2τ4+α2nβ3nδ3δ4+α2nβ4nτ4ν4γ4nδ5n0+α2nβ3nδ3τ5+α2nβ4nτ4δ5γ5nδ6n0+α2nβ4nτ4τ6γ6nδ8n0+α2nν2β2nδ3n0+α2nδ3β3nδ4n0+α2nτ4β4nδ5n0+α2nδ2n0.

Continuing in a similar way, we have

(39)xkn+1xk*[αknβknνk2{γkn(νk1)+1}+αkn{νk(1βkn)1}+1]xknxk*+[αknβknνk(νkγkn+1)(δ1+μ1)+αknβknνkδ1γ1n(ν11)+αknν1β1nδ1(ν1γ1nγ1n+1)+αknδ1(1β1n)]x1nx1*+[αknγ1nδ1(βknνk+β1nν1)(δ2+μ2)+αknβ2nτ2ν2(γ2nν2+1γ2n)+αknβknνkτ2(νkγkn+γ2nν2γ2n+1)+αknβ1nδ1[γ2nδ2(ν21)+δ2+μ2]β2n+1]x2nx2*+[αknβknνk[γ1nδ1δ3+γ2nτ2(δ3+μ3)]+αknβ1nδ1[γ1nν1δ3+γ2nδ2δ3+γ2nδ2μ3+τ3+γ3nτ3(ν31)]+αknβ2nτ2[γ2nν2(δ3+μ3)+γ3nδ3(ν31)+δ3+τ3]]x3nx3*+[αknβknνkτ2τ4γ2n+αknβ1nδ1[δ2γ2nτ4+γ3nτ3(δ4+μ4)]+αknβ2n[τ2τ4(γ2nν2+γ4nν4γ4n+1)+γ3nδ3(τ3δ4+τ2μ4)]]x4nx4*+αknβ1nγ3nδ1τ3τ5+αknβ2nτ2[γ3nδ3τ5+γ4nτ4(δ5+μ5)]x5nx5*+αknβ2nγ4nτ2τ4τ6x6nx6*+αknβknνk2γknδ2n0+αknβknνkδ1+αknν1β1nδ1γ1nδ3n0+αknβknνkτ2+αknβ1nδ1δ2+αknβ2nτ2ν2γ2nδ3n0+αknβ1nδ1τ3+αknβ2nτ2δ3γ3nδ4n0+αknβ2nτ2τ4γ4nδ6n0+αknνkβknδ1n0+αknδ1β1nδ2n0+αknτ2β2nδ3n0+αknδkn0.

From (37)–(39), we have

(40)x1(n+1)x1+x2(n+1)x2++xκ(n+1)xκi=1nΩi(n)1+2Ωi(n)+3Ωi(n)+4Ωi(n)+5Ωi(n)+6Ωi(n)+7Ωi(n)xi(n)xi+i=1kαinβinνi2γinδi+2n(δi+2n)+i=1kαinβinνiδi+1+αinνi+1βi+1nδi+1γi+1nδi+3n(δi+3n)+i=1kαinβinνiτi+2+αinβi+1nδi+1δi+2+αinβi+2nτi+2νi+2γi+2nδi+3n(δi+3n)+i=1kαinβi+1nδi+1τi+3+αinβi+2nτi+2δi+3γi+3nδi+4n(δi+4n)+i=1kαinβi+2nτi+2τi+4γi+4nδi+6n(δi+6n)+i=1kαinνiβinδi+1n(δi+1n)+i=1kαinδi+1βi+1nδi+2n(δi+2n)+i=1kαinτi+2βi+2nδi+3n(δi+3n)+i=1kαinδin(δin).

where

Ωi(n)1=αinβinνi2{γin(νi1)+1}+αin{νi(1βin)1}+1,Ωi(n)2=[αinβinνi(νiγin+1)(δi+1+μi+1)+αinβinνiδi+1γi+1n(νi+11)+αinνi+1βi+1nδi+1(νi+1γi+1nγi+1n+1)+αinδi+1(1βi+1n)],Ωi(n)3=[αinγi+1nδi+1(βinνi+βi+1nνi+1)(δi+2+μi+2)+αinβi+2nτi+2νi+2(γi+2nνi+2+1γi+2n)+αinβinνiτi+2(νiγin+γi+2nνi+2γi+2n+1)+αinβi+1nδi+1[γi+1nδi+2(νi+21)+δi+2+μi+2]βi+1n+1],

Ωi(n)4=[αinβinνi[γi+1nδi+1δi+3+γi+2nτi+2(δi+3+μi+3)]+αinβi+1nδi+1[γi+1nνi+1δi+3+γi+2nδi+2δi+3+γi+2nδi+2μi+3+τi+3+γi+3nτi+3(νi+31)]+αinβi+2nτi+2[γi+2nνi+2(δi+3+μi+3)+γi+3nδi+3(νi+31)+δi+3+τi+3]],Ωi(n)5=[αinβinνiτi+2τi+4γi+2n+αinβi+1nδi+1[δi+2γi+2nτi+4+γi+3nτi+3(δi+4+μi+4)]+αinβi+2n[τi+2τi+4(γi+2nνi+2+γi+4nνi+4γi+4n+1)+γi+3nδi+3(τi+3δi+4+τi+2μi+4)]],Ωi(n)6=αinβi+1nγi+3nδi+1τi+3τi+5+αinβi+2nτi+2[γi+3nδi+3τi+5+γi+4nτi+4(δi+5+μi+5)],Ωi(n)7=αinβi+2nγi+4nτi+2τi+4τi+6.

Let Φ(n)=maxΩi(n)1,Ωi(n)2,Ωi(n)3,Ωi(n)4,Ωi(n)5,Ωi(n)6,Ωi(n)7. From (25) and by algebra of convergence of sequences Ωi(n)k and 1k7, we may say that Φ(n)Φ as n, where Φ=maxΩi1,Ωi2,Ωi3,Ωi4,Ωi5,Ωi6,Ωi7. Condition (25) implies that Φ<1, so Φ(n)<1 for sufficiently large n.

Let vn+1=x1(n+1)x1+x2(n+1)x2++xk(n+1)xk. Then, (40) can be written as

vn+1Φ(n)vn,n=1,2,.

Clearly, limsupn1Φ(n)<1 for Φ(n)<1. With the help of Lemma 2, we may claim that 0Φn<1. Hence, {(xi(n),vi(n))} converge strongly to the solution (xi,vi) of system (5). □

A numerical example is provided with a convergence graph.

4. Numerical Example

Let k=2, X=R, x=(x1,x2)R×R and (v1,v2)N1(x1)×N2(x2) such that

(41)w1P1(CI,λ1S1(h1(x1),v2)(x1),YI,λ2S2(h2(x2),v1)(x2))+f1(x1)g2(x2)+S1(h1(x1),v2),w2P2(CI,λ2S2(h2(x2),v1)(x2),YI,λ3S2(h2(x2),v1)(x1))+f2(x2)g3(x1)+S2(h2(x2),v1),

for some w^=(w1,w2)R×R.

Let the mappings fi,gi,hi:RR, Si:R×R:2R, Ni:R×R:CB(R) be defined by

fi(xi)=2xi7(i+1),gi(xi)=3xi49i,hi(xi)=2xi,Si(hi(xi),vi+1)=hi(xi)+3vi+12(i+1)

and Ni(xi)=5xi16i.

Suppose that the mapping Pi:R×RR is defined as

Pi(xi,xi+1)=xi+xi+17+i.

Now, we define the associated resolvent operator,

(42)I,λiS1(hi,vi+1)(xi)=2i(i+1)xi3vi+12(i2+i+1),

the Yosida approximation operator,

(43)YI,λiS1(hi,vi+1)(xi)=(2xi+3vi+1)i2(i2+i+1),

and the Cayley operator,

(44)CI,λiS1(hi,vi+1)(xi)=(i2+i1)xi3vi+1i2+i+1.

Let us choose the controlling sequences {αin}=i6n,βin=(7n3)i12n,{γin}=(3n+1)i12n, and {δin}=i6n+3. Clearly, {αin}, {βin}, {γin}, and {δin} satisfy the conditions of Algorithm 1.

The sequences for the approximate solution of (41) are obtained by using Algorithm 1 in the following way:

(45)xin+1=i6n160i2(i+1)160i2(i+1)+171[yin12(7+i)(i2+i+1){2(i2+i1)yin+2iyi+1n(3i6)vi+1+win}]+6ni6nxin+i26n(6n+3),

(46)yin=7n312n160i3(i+1)160i2(i+1)+171[zin12(7+i)(i2+i+1){2(i2+i1)zin+2izi+1n(3i6)vi+1+win}]+1(7n3)i12nxin+(7n3)(i2+i)12n(6n+3),

and

(47)zin=3n+112n160i3(i+1)160i2(i+1)+171[xin12(7+i)(i2+i+1){2(i2+i1)xin+2ixi+1n(3i6)vi+1+win}]+1(3n+1)i12nxin+(3n+1)(i2+2i)12n(6n+3).

Also, it is verified that all conditions of Theorem 2 are satisfied. Clearly, for w^=(1,1), the sequence xn=(x1n,x2n) converges strongly to the solution x=(0.39,0.60) of system (41). In this regard the convergence graph (Figure 1) and computational table (Table 1) are shown below. Also, the convergence of each sequence individually involved in Algorithm 1 is shown in Figure 2.

Remark 4.

We select identical operators to those in the above numerical illustration and compare our innovative three-step iterative Algorithm 1 against the two-step iterative algorithm (Ishikawa-style) and the one-step iterative algorithm (Mann-style). By setting γin=0, we derive the sequences {xin} and {yin} as detailed below:

(48) x i n + 1 = i 6 n 160 i 2 ( i + 1 ) 160 i 2 ( i + 1 ) + 171 [ y i n 1 2 ( 7 + i ) ( i 2 + i + 1 ) { 2 ( i 2 + i 1 ) y i n + 2 i y i + 1 n ( 3 i 6 ) v i + 1 + w i n } ] + 6 n i 6 n x i n + i 2 6 n ( 6 n + 3 ) ,

(49) y i n = 7 n 3 12 n 160 i 3 ( i + 1 ) 160 i 2 ( i + 1 ) + 171 [ z i n 1 2 ( 7 + i ) ( i 2 + i + 1 ) { 2 ( i 2 + i 1 ) z i n + 2 i z i + 1 n ( 3 i 6 ) v i + 1 + w i n } ] + 1 ( 7 n 3 ) i 12 n x i n + ( 7 n 3 ) ( i 2 + i ) 12 n ( 6 n + 3 ) .

Moreover, by taking βin=γin=0, for all n0, we may approximate by using the Mann-style iterative scheme as follows:

(50) x i n + 1 = i 6 n 160 i 2 ( i + 1 ) 160 i 2 ( i + 1 ) + 171 [ y i n 1 2 ( 7 + i ) ( i 2 + i + 1 ) { 2 ( i 2 + i 1 ) y i n + 2 i y i + 1 n ( 3 i 6 ) v i + 1 + w i n } ] + 6 n i 6 n x i n + i 2 6 n ( 6 n + 3 ) .

The iterative methods that we are employing will stop their operations once the stopping criterion xi(n+1)xin106 has been satisfactorily met. In the accompanying Table 2 and the illustrative Figure 3, we present a comprehensive comparison showcasing the performance of our innovative three-step Algorithm 1, alongside the well-established Ishikawa-type Equations (48) and (49), in conjunction with the Mann-type Algorithm (50), all of which are initiated with the chosen starting point of (0.5,1).

The numerical findings that are meticulously detailed in Table 2 and the graphical representation provided in Figure 3 strongly suggest that our newly proposed three-step Algorithm 1 demonstrates impressive performance and appears to possess a significant competitive edge over the other methods. Based on this analysis, we can confidently assert that our algorithm exhibits remarkable speed and efficiency, typically requiring an average of about 10 to 12 iterations to achieve convergence successfully.

5. Conclusions

In this manuscript, the framework of extended ordered XOR-inclusion problems incorporating Cayley and Yosida operators is presented and examined within the context of real ordered Banach spaces, which encompasses a broader scope than the problems addressed in [11,19,28]. We investigated the existence of solutions to SEOXORIP by utilizing proximal-point mappings under specific conditions deemed appropriate. A three-step iterative methodology is proposed for deriving approximate solutions to SEOXORIP, and an analysis of the convergence of the proposed methodology was conducted. Ultimately, we provided a numerical example accompanied by a convergence graph generated using MATLAB 2018a to substantiate the convergence of the sequence produced by the proposed methodology.

Author Contributions

Conceptualization, D.F., I.A., and F.A.K.; methodology, I.A., N.H.E.E., and E.A.; formal analysis, M.S.A.; investigation, N.H.E.E.; resources, D.F., I.A., and F.A.K.; writing—original draft, I.A., N.H.E.E., and F.A.K.; writing—review and editing, D.F., E.A., and M.S.A.; supervision, F.A.K.; funding acquisition, D.F., E.A., and M.S.A. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Acknowledgments

The authors are grateful to the anonymous reviewers for their valuable remarks which improved the results and presentation of this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Figures and Tables

Figure 1 Convergence of xn=(x1n,x2n) with initial value (1,2).

View Image -

Figure 2 Convergence of xn=(x1n,x2n), yn=(y1n,y2n), and zn=(z1n,z2n) with initial values (1,2),(3,2),and(4,1), respectively.

View Image -

Figure 3 Convergence of xn=(x1n,x2n) with initial value (0.5,1).

View Image -

The computational table of {xn}, {yn}, and {zn} starting with (x10,x20)=(1,2) (y10,y20)=(3,2), and (z10,z20)=(4,1).

No. of For xn=(1,2) For yn=(3,2) For zn=(4,1)
Iterations x n = ( x 1 n , x 2 n ) y n = ( y 1 n , y 2 n ) z n = ( z 1 n , z 2 n )
n = 1 (−1,2) (3,−2) (4,−1)
n = 2 (−0.49930, 0.81207) (0.23862, 0.24273) (−0.72659, 2.10466)
n = 3 (−0.45165, 0.71122) (−0.44464,1.89461) (−0.43555, 0.89865)
n = 4 (−0.46018, 0.80844) (−0.33075, 0.90799) (−0.43376, 0.89865)
n = 5 (−0.45581, 0.80425) (−0.33841, 0.75610) (−0.46637, 0.82427)
n = 10 (−0.44173, 0.76545) (−0.36189, 0.69389) (−0.4845, 0.74925)
n = 15 (−0.43366, 0.73856) (−0.36339, 0.63498) (−0.48451, 0.71074)
n = 20 (−0.42794, 0.71821) (−0.36241, 0.60042) (−0.48211, 0.68513)
n = 25 (−0.42341, 0.70210) (−0.36087, 0.57680) (−0.47936, 0.66615)
n = 30 (−0.41972, 0.68884) (−0.35921, 0.55919) (−0.47668, 0.65118)
n = 35 (−0.41659, 0.67762) (−0.35758, 0.54531) (−0.47417, 0.63887)
n = 40 (−0.41389, 0.66791) (−0.35604, 0.53394) (−0.47186, 0.62845)
n = 45 (−0.41149, 0.65938) (−0.35458, 0.52436) (−0.46972, 0.61943)
n = 55 (−0.40742, 0.64494) (−0.35194, 0.50891) (−0.46591 0.60444)
n = 70 (−0.40252, 0.62779) (−0.34853, 0.49157) (−0.46113, 0.58701)
n = 80 (−0.39981, 0.61841) (−0.34656, 0.48248) (−0.45835 0.57760)
n = 90 (−0.39742, 0.61020) (−0.34479, 0.47473) (−0.45588, 0.56946)
n = 100 (−0.39523, 0.60290) (−0.34318, 0.46796) (−0.45365, 0.56228)

The values of xn=(x1n,x2n) with the initial value (0.5,1).

No. ofIterations Three-Step Iterative Algorithmxn=(x1n,x2n) Two-Step Iterative Algorithmxn=(x1n,x2n) One Step Iterative Algorithmxn=(x1n,x2n)
n = 1 (−0.5,1) (−0.5,1) (−0.5,1)
n = 2 (0.12570, −0.25747) (0.02153, −0.08605) (0.03702, −0.37147)
n = 3 (0.20262, −0.30925) (0.11337, −0.14096) (0.18311, −0.41916)
n = 4 (0.16102, −0.13137) (0.11288, −0.0982) (0.22754, −0.34455)
n = 5 (0.11547, −0.05666) (0.09339, −0.06932) (0.2329, −0.27319)
n = 10 (0.01631, 0.00114) (0.02223, −0.01653) (0.15164, −0.11691)
n = 15 (0.00225, 0.00301) (0.00459, −0.00439) (0.09413, −0.07328)
n = 20 (0.00017, 0.00172) (0.00071 −0.00100) (0.06543, −0.05345)
n = 25 (0, 0.00093) (0.00013, −0.0001) (0.04982, −0.04209)
n = 30 (0, 0.00052) (0, 0.00016) (0.04026, −0.03471)
n = 35 (0, 0.00029) (0, 0.00013) (0.03382, −0.02954)
n = 40 (0, 0.00016) (0, 0.00009) (0.02918, −0.02571)
n = 45 (0, 0.00009) (0, 0.00006) (0.02566, −0.02276)
n = 55 (0, 0) (0, 0.00003) (0.02069, 0)
n = 70 (0, 0) (0, 0) (0.01604, 0)
n = 80 (0, 0) (0, 0) (0.01395, −0.01262)
n = 90 (0, 0) (0, 0) (0.01234, −0.0112)
n = 100 (0, 0) (0, 0) (0.01107, −0.01006)

References

1. Adamu, A.; Abass, H.H.; Ibrahim, A.I.; Kilicman, A. An accelerated Halpern-type algorithm for solving variational inclusion problems with applications. Bangmod J. Math. Comput. Sci.; 2022; 8, pp. 37-55. [DOI: https://dx.doi.org/10.58715/bangmodjmcs.2022.8.4]

2. Adamu, A.; Deepho, J.; Ibrahim, A.H.; Abubakar, A.B. Approximation of zeros of sum of Monotone Mappings with Applications to Variational Inequalities Problems and image processing. Nonlinear Fun. Anal. Appl.; 2021; 262, pp. 411-432.

3. Taiwo, A.; Reich, S.; Agarwal, R.P. Tseng-Type Algorithms for Solving Variational Inequalities Over the Solution Sets of Split Variational Inclusion Problems with An Application to A Bilevel Optimization Problem. J. Appl. Numer. Optim.; 2024; 6, pp. 41-57.

4. Lin, L.-J.; Chen, Y.-D.; Chuang, C.-S. Solutions for a variational inclusion problem with applications to multiple sets split feasibility problems. Fixed Point Theory Appl.; 2013; 2013, 333. [DOI: https://dx.doi.org/10.1186/1687-1812-2013-333]

5. Fang, Y.-P.; Huang, N.-J. H-monotone operator and resolvent operator technique for variational inclusions. Appl. Math. Comput.; 2003; 145, pp. 795-803. [DOI: https://dx.doi.org/10.1016/S0096-3003(03)00275-3]

6. Fang, Y.-P.; Huang, N.-J. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces. Appl. Math. Lett.; 2004; 17, pp. 647-653. [DOI: https://dx.doi.org/10.1016/S0893-9659(04)90099-7]

7. Xia, F.-Q.; Huang, N.-J. Variational inclusions with a general H-monotone operator in Banach spaces. Comput. Math. Appl.; 2007; 54, pp. 24-30. [DOI: https://dx.doi.org/10.1016/j.camwa.2006.10.028]

8. Ding, X.P.; Xia, F.Q. A new class of completely generalized quasivariational inclusions in Banach spaces. J. Comput. Appl. Math.; 2002; 147, pp. 369-383. [DOI: https://dx.doi.org/10.1016/S0377-0427(02)00443-0]

9. Amann, H. On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal.; 1972; 11, pp. 346-384. [DOI: https://dx.doi.org/10.1016/0022-1236(72)90074-2]

10. Li, H.G. Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space. Nonlinear Anal. Forum; 2008; 13, pp. 205-214.

11. Ali, I.; Ahmad, R.; Wen, C.F. Cayley Inclusion problem involving XOR-operation. Mathematics; 2019; 7, 302. [DOI: https://dx.doi.org/10.3390/math7030302]

12. Li, H.G.; Li, L.P.; Jin, M.M. A class of nonlinear mixed ordered ininclusion problems for ordered (αA,λ)-ANODM set-valued mappings with strong compression mapping. Fixed Point Theory Appl.; 2014; 2014, 79. [DOI: https://dx.doi.org/10.1186/1687-1812-2014-79]

13. Li, H.G. A nonlinear inclusion problem involving (α,λ)-NODM set-valued mappings in ordered Hilbert space. Appl. Math. Lett.; 2012; 25, pp. 1384-1388. [DOI: https://dx.doi.org/10.1016/j.aml.2011.12.007]

14. Glowinski, G.; Le Tallec, P. Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics; SIAM: Philadelphia, PA, USA, 1989.

15. Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl.; 2000; 251, pp. 217-229. [DOI: https://dx.doi.org/10.1006/jmaa.2000.7042]

16. Noor, M.A. A predictor-corrector algorithm for general variational inequalities. Appl. Math. Lett.; 2001; 14, pp. 53-58. [DOI: https://dx.doi.org/10.1016/S0893-9659(00)00112-9]

17. Noor, M.A. Three-step iterative algorithms for multivaled quasi-variational inclusions. J. Math. Anal. Appl.; 2001; 255, pp. 589-604. [DOI: https://dx.doi.org/10.1006/jmaa.2000.7298]

18. Ahmad, I.; Rahaman, M.; Ahmad, R.; Ali, I. Convergence analysis and stability of perturbed three-step iterative algorithm for generalized mixed ordered quasi-variational inclusion involving XOR operator. Optimization; 2020; 69, pp. 821-845. [DOI: https://dx.doi.org/10.1080/02331934.2019.1652910]

19. Ali, I.; Wang, Y.; Ahmad, R. Convergence and Stability of a Three-Step Iterative Algorithm for the Extended Cayley–Yosida Inclusion Problem in 2-Uniformly Smooth Banach Spaces: Convergence and Stability Analysis. Mathematics; 2024; 12, 1977. [DOI: https://dx.doi.org/10.3390/math12131977]

20. Schaefer, H.H. Banach Lattices and Positive Operators; Springer: Berlin/Heidelberg, Germany, 1974.

21. Aubin, J.P.; Cellina, A. Differential Inclusions; Springer: Berlin, Germany, 1984.

22. Kazmi, K.R.; Khan, F.A.; Shahzad, M. A system of generalized variational inclusions involving generalized H(·,·)-accretive mapping in real q-uniformly smooth Banach spaces. Appl. Math. Comput.; 2011; 217, pp. 9679-9688. [DOI: https://dx.doi.org/10.1016/j.amc.2011.04.052]

23. Salahuddin,. System of Generalized Mixed Nonlinear Ordered Variational Inclusions. Numer. Algebra Control. Optim.; 2019; 9, pp. 445-460. [DOI: https://dx.doi.org/10.3934/naco.2019026]

24. Du, Y.H. Fixed points of increasing operators in ordered Banach spaces and applications. Appl. Anal.; 1990; 38, pp. 1-20. [DOI: https://dx.doi.org/10.1080/00036819008839957]

25. Ahmad, I.; Ahmad, R.; Iqbal, J. A resolvent approach for solving a set-valued variational inclusion problem using weak-RRD set-valued mapping. Korean J. Math.; 2016; 16, pp. 199-213. [DOI: https://dx.doi.org/10.11568/kjm.2016.24.2.199]

26. Osilike, M.O. Stability results for the Ishikawa fixed point iteration procedure. Ind. J. Pure Appl. Math.; 1995; 26, pp. 937-945.

27. Nadler, S.B., Jr. Multi-valued contraction mappings. Pac. J. Math.; 1969; 30, pp. 475-488. [DOI: https://dx.doi.org/10.2140/pjm.1969.30.475]

28. Arifuzzaman,; Irfan, S.S.; Ahmad, I. Convergence Analysis for Cayley Variational Inclusion Problem Involving XOR and XNOR Operations. Axioms; 2025; 14, 149. [DOI: https://dx.doi.org/10.3390/axioms14030149]

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.