Content area

Abstract

To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical model of the droplet ejection process is then established based on Computational Fluid Dynamics (CFD). Building upon this model, numerical simulations of droplet generation, breakup, and flight are conducted by using the Volume of Fluid (VOF) model within the Fluent module of the Workbench 2020 R2 platform. Finally, under consistent driving conditions, the effects of key parameters—viscosity, surface tension, and inlet velocity—on the ejection process are investigated through simulation. Based on the results, appropriate ranges and recommended values for ink properties are determined. This study provides significant engineering value for improving the stability and precision of droplet formation in industrial sand mold 3D printing.

Details

1009240
Title
Simulation Study of Ink Droplet Spraying Based on Sand 3D Printing
Publication title
Volume
16
Issue
6
First page
621
Number of pages
15
Publication year
2025
Publication date
2025
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2025-05-25
Milestone dates
2025-04-27 (Received); 2025-05-21 (Accepted)
Publication history
 
 
   First posting date
25 May 2025
ProQuest document ID
3223926662
Document URL
https://www.proquest.com/scholarly-journals/simulation-study-ink-droplet-spraying-based-on/docview/3223926662/se-2?accountid=208611
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-06-25
Database
ProQuest One Academic