Abstract

Weak electric currents are induced in moving seawater by cutting the geomagnetic fields. These electric currents can produce measurable electromagnetic fields that may be used for some purposes such as monitoring of ocean internal waves. This article is aimed at presenting the procedure to calculate the electromagnetic fields owing to the wake raised by an undersea moving slender body. A pair of Havelock point sources are introduced to model the moving body, which generate the similar wake at places far from the body. The ocean is taken to be of finite-depth with density stratification due to thermocline. Three distinct forms of water-flow wake can be identified, the free-surface Kelvin wake, the internal interfacial wake, and the localized volume wake. The electric currents evoked by the motional wake may produce observable electromagnetic fields, which may be solved using rigorous electromagnetic field theory. At the sea level, the magnitudes of the induced electric field and magnetic field are on the order of a few microvolts per meter and one nano-Tesla, respectively, which are appreciable in terms of nowadays marine electric and magnetic sensors.

Details

Title
Electromagnetic Fields Due to the Wake of a Moving Slender Body in a Finite-Depth Ocean with Density Stratification
Author
Zhi-Hua Xu 1 ; Chang-Ping, Du 1 ; Ming-Yao, Xia 1   VIAFID ORCID Logo 

 School of Electronics Engineering and Computer Science, Peking University, Beijing, China 
Pages
1-12
Publication year
2018
Publication date
Oct 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2115726286
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.